POJ 1127 /// 判断线段与线段是否相交
题目大意:
给定n条线段
接下来n行是端点信息
接下来询问 a b 是否相交
若a与c相交 b与c相交 ,那么a与b就是相交的
先判断任两条线段是否相交 再用folyd
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <string.h>
using namespace std;
const double eps = 1e-; double add(double a,double b) {
if(abs(a+b)<eps*(abs(a)+abs(b))) return ;
return a+b;
} // 考虑误差
struct P {
double x,y;
P(){};
P(double _x,double _y):x(_x),y(_y){}
P operator -(P p) {
return P(add(x,-p.x),add(y,-p.y)); };
P operator +(P p) {
return P(add(x,p.x),add(y,p.y)); };
P operator *(double d) {
return P(x*d,y*d); };
double dot(P p) {
return add(x*p.x,y*p.y); };
double det(P p) {
return add(x*p.y,-y*p.x); };
};
// c在直线ab上 外积==0,c在ab两点之间 内积<=0
bool onSeg(P a,P b,P c)
{
return (a-c).det(b-c)== && (a-c).dot(b-c)<=;
} // 求两直线ab与cd交点
/*
设直线ab上点为 a+(b-a)t,t为变量
交点需满足在直线cd上 则(d-c)*(a+t(b-a)-c)=0(外积)
分解为加减式子 将t放在等号左边 其他放在右边
化简推导得t=(d-c)*(c-a)/(d-c)*(b-a)
则交点为a+(b-a)*((d-c)*(c-a)/(d-c)*(b-a))
*/
P ins(P a,P b,P c,P d)
{
return a+(b-a)*((d-c).det(c-a)/(d-c).det(b-a));
} bool insSS(P a,P b,P c,P d)
{
if((a-b).det(c-d)==) //平行
return onSeg(a,b,c) || onSeg(a,b,d)
|| onSeg(c,d,a) || onSeg(c,d,b);
else {
P t=ins(a,b,c,d);
return onSeg(a,b,t) && onSeg(c,d,t);
}
} int main()
{
int n,x,y;
bool G[][];
P p[],q[];
while(~scanf("%d",&n)) {
if(n==) break;
for(int i=;i<n;i++)
scanf("%lf%lf%lf%lf",&p[i].x,&p[i].y,&q[i].x,&q[i].y); memset(G,,sizeof(G));
for(int i=;i<n;i++) {
G[i][i]=;
for(int j=;j<i;j++)
G[i][j]=G[j][i]=insSS(p[i],q[i],p[j],q[j]);
} for(int i=;i<n;i++)
for(int j=;j<n;j++)
for(int k=;k<n;k++)
G[j][k] |= G[j][i]&&G[i][k]; while(~scanf("%d%d",&x,&y)) {
if(x+y==) break;
if(G[--x][--y]) printf("CONNECTED\n");
else printf("NOT CONNECTED\n");
}
} return ;
}
POJ 1127 /// 判断线段与线段是否相交的更多相关文章
- Segments - POJ 3304 (判断直线与线段是否相交)
题目大意:给出一些线段,然后判断这些线段的投影是否有可能存在一个公共点. 分析:如果这些线段的投影存在一个公共点,那么过这个公共点作垂线一定与所有的直线都想交,于是题目转化成是否存在一个直线可以经 ...
- POJ 2074 /// 判断直线与线段相交 视野盲区
题目大意: 将所有物体抽象成一段横向的线段 给定房子的位置和人行道的位置 接下来给定n个障碍物的位置 位置信息为(x1,x2,y) 即x1-x2的线段 y相同因为是横向的 求最长的能看到整个房子的一段 ...
- poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)
Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
- poj 2653 线段与线段相交
Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11884 Accepted: 4499 D ...
- poj 1269 线段与线段相交
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13605 Accepted: 60 ...
- POJ 1039 Pipe【经典线段与直线相交】
链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
随机推荐
- delphi 安卓开发常用
delphi 安卓开发有几个常用的pas: FMX.Helpers.Android, Androidapi.JNI.Net, Androidapi.JNI.GraphicsContentViewTex ...
- bzoj1037题解
[解题思路] DP.f[i][j][x][y]表示已选了i个♂和j个♀,其中♂比♀多x,♀比♂多y(x,y≥0). 递推式转移方程: (f[i+1][j][x+1][max(y-1,0)]+=f[i] ...
- bzoj1003题解
[题意分析] 给你一张无向图,固定起点和终点,除这两点外每个点都有可能消失一段时间(保证起点和终点相互可达),每天选择的路径总长,以及对路径的修改都有代价,求给定时间内最小代价保证起点终点始终连通. ...
- 线性dp——cf988F
不是很难,dp[i]表示到位置i的最小花费 #include<bits/stdc++.h> using namespace std; #define ll long long #defin ...
- JVM内核-原理、诊断与优化学习笔记(九):锁
文章目录 线程安全 多线程网站统计访问人数 多线程访问ArrayList 对象头Mark Mark Word,对象头的标记,32位 描述对象的hash.锁信息,垃圾回收标记,年龄 偏向锁 轻量级锁 B ...
- Codeforces 1168A Increasing by Modulo
题目链接:http://codeforces.com/problemset/problem/1168/A 题意:给一个数组,数组中元素范围为0~n,每次你可以选择若干元素进行(ai+1)%m的操作,问 ...
- 拾遗:Git 基础
http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/ 一.参数配置 $ git con ...
- 剑指offer——05重建二叉树
题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...
- DRF的视图组件
目录 DRF的视图组件 两大视图类 六大视图工具类 九大工具视图类 两大视图集基类 DRF的视图组件 DRF的视图组件大概分以下几类 两大视图类 APIView.GenericAPIView from ...
- Flask-session用法
概念 flask-session是flask框架的session组件,由于原来flask内置session使用签名cookie保存,该组件则将支持session保存到多个地方,如: * redis:保 ...