POJ 1127 /// 判断线段与线段是否相交
题目大意:
给定n条线段
接下来n行是端点信息
接下来询问 a b 是否相交
若a与c相交 b与c相交 ,那么a与b就是相交的
先判断任两条线段是否相交 再用folyd
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <string.h>
using namespace std;
const double eps = 1e-; double add(double a,double b) {
if(abs(a+b)<eps*(abs(a)+abs(b))) return ;
return a+b;
} // 考虑误差
struct P {
double x,y;
P(){};
P(double _x,double _y):x(_x),y(_y){}
P operator -(P p) {
return P(add(x,-p.x),add(y,-p.y)); };
P operator +(P p) {
return P(add(x,p.x),add(y,p.y)); };
P operator *(double d) {
return P(x*d,y*d); };
double dot(P p) {
return add(x*p.x,y*p.y); };
double det(P p) {
return add(x*p.y,-y*p.x); };
};
// c在直线ab上 外积==0,c在ab两点之间 内积<=0
bool onSeg(P a,P b,P c)
{
return (a-c).det(b-c)== && (a-c).dot(b-c)<=;
} // 求两直线ab与cd交点
/*
设直线ab上点为 a+(b-a)t,t为变量
交点需满足在直线cd上 则(d-c)*(a+t(b-a)-c)=0(外积)
分解为加减式子 将t放在等号左边 其他放在右边
化简推导得t=(d-c)*(c-a)/(d-c)*(b-a)
则交点为a+(b-a)*((d-c)*(c-a)/(d-c)*(b-a))
*/
P ins(P a,P b,P c,P d)
{
return a+(b-a)*((d-c).det(c-a)/(d-c).det(b-a));
} bool insSS(P a,P b,P c,P d)
{
if((a-b).det(c-d)==) //平行
return onSeg(a,b,c) || onSeg(a,b,d)
|| onSeg(c,d,a) || onSeg(c,d,b);
else {
P t=ins(a,b,c,d);
return onSeg(a,b,t) && onSeg(c,d,t);
}
} int main()
{
int n,x,y;
bool G[][];
P p[],q[];
while(~scanf("%d",&n)) {
if(n==) break;
for(int i=;i<n;i++)
scanf("%lf%lf%lf%lf",&p[i].x,&p[i].y,&q[i].x,&q[i].y); memset(G,,sizeof(G));
for(int i=;i<n;i++) {
G[i][i]=;
for(int j=;j<i;j++)
G[i][j]=G[j][i]=insSS(p[i],q[i],p[j],q[j]);
} for(int i=;i<n;i++)
for(int j=;j<n;j++)
for(int k=;k<n;k++)
G[j][k] |= G[j][i]&&G[i][k]; while(~scanf("%d%d",&x,&y)) {
if(x+y==) break;
if(G[--x][--y]) printf("CONNECTED\n");
else printf("NOT CONNECTED\n");
}
} return ;
}
POJ 1127 /// 判断线段与线段是否相交的更多相关文章
- Segments - POJ 3304 (判断直线与线段是否相交)
题目大意:给出一些线段,然后判断这些线段的投影是否有可能存在一个公共点. 分析:如果这些线段的投影存在一个公共点,那么过这个公共点作垂线一定与所有的直线都想交,于是题目转化成是否存在一个直线可以经 ...
- POJ 2074 /// 判断直线与线段相交 视野盲区
题目大意: 将所有物体抽象成一段横向的线段 给定房子的位置和人行道的位置 接下来给定n个障碍物的位置 位置信息为(x1,x2,y) 即x1-x2的线段 y相同因为是横向的 求最长的能看到整个房子的一段 ...
- poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)
Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
- poj 2653 线段与线段相交
Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11884 Accepted: 4499 D ...
- poj 1269 线段与线段相交
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13605 Accepted: 60 ...
- POJ 1039 Pipe【经典线段与直线相交】
链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
随机推荐
- js条件语句,用if...else if....else方程ax2+bx+c=0一元二次方程。求根
if 语句 - 只有当指定条件为 true 时,使用该语句来执行代码 if...else 语句 - 当条件为 true 时执行代码,当条件为 false 时执行其他代码 if...else if... ...
- HMaster高可用
1.确保HBase集群已正常停止 $ bin/stop-hbase.sh 2.在conf目录下创建backup-masters文件 $ touch conf/backup-masters 3.在bac ...
- BZOJ 3669: [Noi2014]魔法森林(lct+最小生成树)
传送门 解题思路 \(lct\)维护最小生成树.我们首先按照\(a\)排序,然后每次加入一条边,在图中维护一棵最小生成树.用并查集判断一下\(1\)与\(n\)是否联通,如果联通的话就尝试更新答案. ...
- 简单HOOK SSDT实现文件防删除
http://www.rosoo.net/a/201001/8347.html
- git相关操作。
之前只会用图形端的GIT中,命令行的比较陌生,整理下,供自己以后参考 关键的名词: 工作区:工作区 Index / Stage:暂存区 仓库:仓库区(或本地仓库) 远程控制:远程仓库 到项目目录下gi ...
- 54Mbps、150Mbps、433Mbps 你知道这三个Wi-Fi速率怎么算的吗?
802.11g能够提供54Mbps的最大速率, 802.11n和802.11ac单流分别能够提供150Mbps和433Mbps的最大速率,这些数字是怎么算的呢?(看红字,更容易理解哟) ...
- iBATIS存储过程
使用iBATIS配置来调用存储过程.为了理解这一章,首先需要了解我们是如何在MySQL中创建一个存储过程. 在继续对本章学习之前,可以通过MySQL存储过程. 我们已经在MySQL下有EMPLOYEE ...
- 【LGP5127】子异和
题目 子异和这个名字,真是思博 显然一个集合的子集异或和为,\(2^{|S|-1}\times A\),\(A\)为集合的或和 于是现在的问题变成了树链异或一个数,求树链或和 显然强行拆位是可以做的, ...
- js面向对象编程:this究竟代表什么?第二篇
总觉得自己弄明确了js中this的含义.this总是指向调用方法的对象,作为方法调用,那么this就是指实例化的对象.但前几天自己写脚本却遇到了一个非常奇怪的问题. 代码例如以下: ...
- 安装go环境
~~~~~~~~~~~~~~~~~~~~~~~~~~~~go项目运行时的依赖包安装问题~~~~~~~~~~~~~~~~~~~~~~~~~~~~1.安装go环境 wget https://dl.goog ...