机器学习-RBF高斯核函数处理
SVM高斯核函数-RBF优化
重要了解数学的部分:
协方差矩阵,高斯核函数公式。
个人建议具体的求法还是看下面的核心代码吧,更好理解,反正就我个人而言,烦躁的公式,还不如一段代码来的实际。本来想用Java的一个叫jblas的矩阵包,但是想了想,还是自己动手写一下吧。加深一下自己理解。实现的语言用的是java孪生兄弟Scala。我想应该不难懂。矩阵变换用二位数组将就。
以下代码建议用scala命令行调试
核心代码
def TransposedMatrix(a:Array[Array[Double]]):Array[Array[Double]]={//返回转置矩阵
val length=a.length
val width=a(0).length
var TransposedM =Array.ofDim[Double](width,length)
for(i <- 0 to length-1)
for(j <- 0 to width-1) {
TransposedM(j)(i) = a(i)(j)
}
TransposedM
}
def R1(i:Int,j:Int,M:Array[Array[Double]]):Double={//R(i,j)=(第i列-第j列)*[(第i列-第j列)转置]
var sum:Double=0
for(x <- 0 to M.length-1)
sum+=Math.pow((M(x)(i)-M(x)(j)),2)
sum
}
def RowAverage(a:Array[Array[Double]]):Array[Double]={//返回列的均值,返回一个列矩阵
val length=a.length
val width=a(0).length
var b=new Array[Double](width)
for(i <- 0 to width-1)
for(j <- 0 to length-1)
b(i) += a(j)(i)
for(i <- 0 to width-1)
b(i)=b(i)/length
b
}
def sumOfRow(a:Array[Array[Double]]):Array[Double]={//返回矩阵列的和,返回一个列矩阵
val length=a.length
val width=a(0).length
var b=new Array[Double](width)
for(i <- 0 to width-1)
for(j <- 0 to length-1)
b(i) += a(j)(i)
for(i <- 0 to width-1)
b(i)=b(i)
b
}
def sum(i:Int,j:Int,a:Array[Array[Double]]):Double={//i列乘j列的转置
var result:Double=0
for(x<- 0 to a.length-1)
result +=(a(x)(i)*a(x)(j))
result
}
def cov(a:Array[Array[Double]]):Array[Array[Double]]={//将特征矩阵作为参数,返回协方差矩阵
val m1=TransposedMatrix(a)
val m2=RowAverage(m1)
val m3=datasort(m1,m2)//将矩阵中心化
val width=m3(0).length
var b =Array.ofDim[Double](width,width)
for(i <- 0 to width-1)
for(j <- 0 to width-1)
b(i)(j)=sum(i,j,m3)
b
}
def datasort(a:Array[Array[Double]],b:Array[Double]):Array[Array[Double]]={//矩阵中心化,将每列减去列的均值
for(i <- 0 to a(0).length-1)
for(j <- 0 to a.length-1)
a(j)(i) -= b(i)
a
}
def gaussMatrix(a:Array[Array[Double]],delta:Array[Double]):Array[Array[Double]]={//a为特征矩阵,delta为协方差矩阵列之和,返回高斯核函数矩阵
val b=TransposedMatrix(a)
val length=b(0).length
var R =Array.ofDim[Double](length,length)
for(i <- 0 to length-1)
for(j <- 0 to length-1)
R(i)(j)=Math.exp(-R1(i,j,b)/delta(j))
R
}
val test=Array(Array(2.0, 8.0), Array(3.0, 6.0), Array(9.0, 2.0))
val test2=cov(test)
val rowOfsum=sumOfRow(res65)
gaussMatrix(test,rowOfsum)
欢迎各位看官大爷批评指教。
感谢下面百度知道回复的朋友,实现的代码段很多得到他的启示。
http://zhidao.baidu.com/link?url=-u5LznclWQ0LbvEx3DB8sofohyP7nJCWws78TsWBNaDR15rDn-7ENoRealHRIM8W8ycioegl_NGAFzQJ33PbZ90ACQQ7eLf8HgR7DAQUJjS
机器学习-RBF高斯核函数处理的更多相关文章
- 机器学习:SVM(核函数、高斯核函数RBF)
一.核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'.y',K(x, y) 就是返回新的样本经过计算得到的值: 在 SVM 类 ...
- 【机器学习】SVM核函数
知识预备 1. 回顾:logistic回归出发,引出了SVM,即支持向量机[续]. 2. Mercer定理:如果函数K是上的映射(也就是从两个n维向量映射到实数域).那么如果K是一个有效核函数(也称 ...
- RBF高斯径向基核函数【转】
XVec表示X向量.||XVec||表示向量长度.r表示两点距离.r^2表示r的平方.k(XVec,YVec) = exp(-1/(2*sigma^2)*(r^2))= exp(-gamma*r^2) ...
- 机器学习之高斯混合模型及EM算法
第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类 ...
- 吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...
- 机器学习 : 高斯混合模型及EM算法
Mixtures of Gaussian 这一讲,我们讨论利用EM (Expectation-Maximization)做概率密度的估计.假设我们有一组训练样本x(1),x(2),...x(m),因为 ...
- 机器学习-SVM-手写识别问题
机器学习-SVM-手写识别问题 这里我们解决的还是之前用KNN曾经解决过的手写识别问题(https://www.cnblogs.com/jiading/p/11622019.html),但相比于KNN ...
- SVM-支持向量机总结
一.SVM简介 (一)Support Vector Machine 支持向量机(SVM:Support Vector Machine)是机器学习中常见的一种分类算法. 线性分类器,也可以叫做感知机,其 ...
- 《Machine Learning in Action》—— 懂的都懂,不懂的也能懂。非线性支持向量机
说在前面:前几天,公众号不是给大家推送了第二篇关于决策树的文章嘛.阅读过的读者应该会发现,在最后排版已经有点乱套了.真的很抱歉,也不知道咋回事,到了后期Markdown格式文件的内容就解析出现问题了, ...
随机推荐
- 数据库Mysql监控及优化
在做 性能测试的时候数据最重要,数据来源于哪里呢,当然是数据库了,数据库中,我们可以知道,数据从磁盘中要比从缓存中读取数据的时间要慢的多的多,还可以知道,同样的一个sql语句,执行的效率也不一样,这是 ...
- 深入剖析Redis RDN持久化机制
rdb是redis保存内存数据到磁盘数据的其中一种方式(另一种是AOF).Rdb的主要原理就是在某个时间点把内存中的所有数据的快照保存一份到磁盘上.在条件达到时通过fork一个子进程把内存中的数据写到 ...
- python 面向对象编程语言
- rqnoj86 智捅马蜂窝
题目描述 背景 为了统计小球的方案数,平平已经累坏了.于是,他摘掉了他那800度的眼镜,躺在树下休息. 后来,平平发现树上有一个特别不一样的水果,又累又饿的平平打算去把它摘下来. 题目描述 现在,将大 ...
- C# 获取上传文件的文件名和后缀名
//获得要上传的文件 HttpPostedFile file = Request.Files[]; //获得到文件名 string fileName = System.IO.Path.GetFileN ...
- hdu1536 sg打表
标记数组用bool型防止超时.输入的f[ ]要排序. #include<stdio.h> #include<string.h> #include<algorithm> ...
- python 解释器编码
- Mysql----linux下安装和使用
一.安装 安装环境centOS,MySQL 使用yum安装mysql 1. 下载rpm [root@CoderMrD admin]# wget -i -c http://dev.mysql.com/g ...
- 巨蟒python全栈开发-第11阶段 ansible_project5
今日大纲 1.命令展示前端页面实现(下面有个断点) 2.命令下发后端展示
- iOS runtime整理
iOS利用Runtime自定义控制器POP手势动画 http://www.cocoachina.com/ios/20150401/11459.html Objective C运行时(runtime) ...