bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053
写了个打表程序。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int lst=,cnt,N=2e9,fx=,knt;
int main()
{
for(int i=;i<=N;i+=fx)
{
cnt=;int k=i;
for(int j=;j*j<=k;j++)
{
int ct=;
if(k%j==)
{
if(j!=&&(j&)==){cnt=;break;}
while(k%j==)k/=j,ct++;
}
cnt*=ct+;
}
if(k>)cnt<<=;
if(cnt>lst)printf("%d ",i),lst=cnt,knt++;
if(i==)fx=;
if(i==)fx=;
if(i==)fx=;
}
return ;
}
打了个表过了……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
int c[]={,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,
,,,,,,,,
,,,,,,};
int main()
{
scanf("%d",&n);
for(int i=;i>=;i--)
if(c[i]<=n)
{
printf("%d\n",c[i]);break;
}
return ;
}
然而实际上是dfs。
首先要发现质因数数量一定时越小的质因数应该越多。如果有一个质因数较大而较多,可以把它的数量与一个较小的质因数的数量换一下,这样算出来的约数个数不变,而答案更优。
然后发现2*3*5*7*11*13*17*19*23*29大于2e9。因为上面一行的性质,所以用到的最大的质数是23。
然后就能爆搜了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int n,mx,ans,pri[]={,,,,,,,,};
void dfs(int ps,int cnt,int lst,ll w)
{
if(cnt>mx)mx=cnt,ans=n+;
if(cnt==mx)ans=min(ans,(int)w);
if(ps>)return;//放在这!
for(int i=;i<=lst&&w<=n;i++,w*=pri[ps])//为什么不能从1开始?
dfs(ps+,cnt*(i+),i,w);
}
int main()
{
scanf("%d",&n);
dfs(,,,);
printf("%d\n",ans);
return ;
}
bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表的更多相关文章
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
- BZOJ 1053 [HAOI2007]反素数ant 神奇的约数
本蒟蒻终于开始接触数学了...之前写的都忘了...忽然想起来某神犇在几个月前就切了FWT了... 给出三个结论: 1.1-N中的反素数是1-N中约数最多但是最小的数 2.1-N中的所有数的质因子种类不 ...
- BZOJ 1053 [HAOI2007]反素数ant(约数个数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1053 [题目大意] 于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6 ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
- BZOJ(8) 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4118 Solved: 2453[Submit][St ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3480 Solved: 2036[Submit][St ...
随机推荐
- Pascal代码自动格式化
const WEnter=; key=; next_line:..WEnter]of string=(';','begin','else','then','repeat','do','var'); k ...
- ODOO/OPENERP的网页模块QWEB简述
1.web 模块 注意,OpenERP 模块中 web 部分用到的所有文件必须被放置在模块内的 static 文件夹里.这是强制性的,出于安全考虑. 事实上,我们创建的文件夹 CSS,JS 和 XML ...
- centos7 搭建 php7 + nginx (1)
前言 曾今,写过几篇类似的文章,但是发现几个月后,自己回头再看的时候,有种支离破碎的感觉.自己写的并不全,所以今天打算写一篇比较详细的文档.争取下次环境的减的时候,只需要拷贝复制粘贴即可完成环境搭建. ...
- python mysql数据库中 json的存储
首先数据库里的字段类型需要设置为json: 存储这个json时需要把这个json变为字符串,而且是最外层为单引号,内部字符串为双引号!如图: 所以python脚本中这个字段的字符串应该这样写: 得出 ...
- 关于SqlServer的内连接,外链接以及left join,right join之间的一些问题与区别。
就我个人理解通俗点来说内连接和外连接区别: 内连接 inner join或者 join (被默认为内连接) : 内连接的原理是:先进行语句判断和运行得出结果,然后在将结果连接起来,一般是横着连接. 外 ...
- centos7中给Elasticsearch5 安装bigdesk
系统:centos7 elasticsearch:5.2.2 安装步骤 步骤 由于elasticsearch不再建议支持插件的安装方式.建议作为独立的程序来安装类似于bigdesk.head. 以前都 ...
- day 42 02--CSS的继承性和层叠性
02--CSS的继承性和层叠性 本节目录 一 继承性 二 层叠性 三 层叠性权重相同处理 一 继承性 css有两大特性:继承性和层叠性 面向对象语言都会存在继承的概念,在面向对象语言中,继承的特点 ...
- Python学习day17-常用的一些模块
figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...
- QC的安装和配置
QC(Quality center)的安装配置 Wmware 虚拟机 数据库SQL server2000 Windows server 2003 须安装数据库的sp4补丁包 注意事项 数据库安装时选择 ...
- Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元
题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...