bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053
写了个打表程序。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int lst=,cnt,N=2e9,fx=,knt;
int main()
{
for(int i=;i<=N;i+=fx)
{
cnt=;int k=i;
for(int j=;j*j<=k;j++)
{
int ct=;
if(k%j==)
{
if(j!=&&(j&)==){cnt=;break;}
while(k%j==)k/=j,ct++;
}
cnt*=ct+;
}
if(k>)cnt<<=;
if(cnt>lst)printf("%d ",i),lst=cnt,knt++;
if(i==)fx=;
if(i==)fx=;
if(i==)fx=;
}
return ;
}
打了个表过了……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
int c[]={,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,
,,,,,,,,
,,,,,,};
int main()
{
scanf("%d",&n);
for(int i=;i>=;i--)
if(c[i]<=n)
{
printf("%d\n",c[i]);break;
}
return ;
}
然而实际上是dfs。
首先要发现质因数数量一定时越小的质因数应该越多。如果有一个质因数较大而较多,可以把它的数量与一个较小的质因数的数量换一下,这样算出来的约数个数不变,而答案更优。
然后发现2*3*5*7*11*13*17*19*23*29大于2e9。因为上面一行的性质,所以用到的最大的质数是23。
然后就能爆搜了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int n,mx,ans,pri[]={,,,,,,,,};
void dfs(int ps,int cnt,int lst,ll w)
{
if(cnt>mx)mx=cnt,ans=n+;
if(cnt==mx)ans=min(ans,(int)w);
if(ps>)return;//放在这!
for(int i=;i<=lst&&w<=n;i++,w*=pri[ps])//为什么不能从1开始?
dfs(ps+,cnt*(i+),i,w);
}
int main()
{
scanf("%d",&n);
dfs(,,,);
printf("%d\n",ans);
return ;
}
bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表的更多相关文章
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
- BZOJ 1053 [HAOI2007]反素数ant 神奇的约数
本蒟蒻终于开始接触数学了...之前写的都忘了...忽然想起来某神犇在几个月前就切了FWT了... 给出三个结论: 1.1-N中的反素数是1-N中约数最多但是最小的数 2.1-N中的所有数的质因子种类不 ...
- BZOJ 1053 [HAOI2007]反素数ant(约数个数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1053 [题目大意] 于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6 ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
- BZOJ(8) 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4118 Solved: 2453[Submit][St ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3480 Solved: 2036[Submit][St ...
随机推荐
- spring的mvc对于页面日期格式进行传值到后台
对于spring的mvc 日期格式从页面传入后台是个问题.string类型和整形都能友好传入.但是对于日期类型date却不能传入.回报403参数不对的错误. 看例子: @RequestMapping( ...
- java笔试之尼科彻斯定理
验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和. 例如: 1^3=1 2^3=3+5 3^3=7+9+11 4^3=13+15+17+19 这题也可以用数学公式推理,首项m*(m ...
- 一.ES6的开发环境搭建
前言: 现在的Chrome浏览器已经支持ES6了,但是有些低版本的浏览器还是不支持ES6的语法,这就需要我们把ES6的语法自动的转变成ES5的语法.Webpack是有自动编译转换能力的,除了Webpa ...
- JS 作用域、原型链
看到一道好题,并附答案 function Foo() { getName = function () { console.log('1'); }; return this; } Foo.getName ...
- 2019/10/17 CSP模拟 总结
T1 补票 Ticket 没什么好说的,不讲了 T2 删数字 Number 很后悔的是其实考场上不仅想出了正解的方程,甚至连优化都想到了,却因为码力不足只打了\(O(n^2)\)暴力,甚至还因为细节挂 ...
- echarts的使用——vue
在vue的项目开发中,数据的可视化可以用echarts来实现,具体用法如下: (1)安装echarts,进入项目目录,执行如下命令,安装echarts: npm install echarts (2) ...
- 01.visual studio 2017添加菜单
创建项目 文件--新建项目 如果新建项目 左侧没有扩展菜单,请安装即可 添加菜单 右键--添加新项 菜单设置 菜单设置文件: MyCommandPackage.vsct <Buttons> ...
- SpringBoot 01_HelloWorld
本文环境配置: JDK:1.8 开发工具:IDEA 操作系统:Windows10 集成工具:Maven SpringBoot版本:1.5.6.RELEASE 构件方式:Spring Initializ ...
- 第二周——1.项目中MySQL版本问题
1.版本升级 经组长推荐,本地安装的是mysql-8.0.11,而主项目用的还是版本5.6, 因此需要升级版本. 首先,更新驱动:下载mysql-connector-java-8.0.11,将E:\P ...
- charles-过滤网络请求方法
方法一:在主界面的中部的 Filter 栏中填入需要过滤出来的关键字.例如我们的服务器的地址是:https://www.baidu.com , 那么只需要在 Filter 栏中填入 https://w ...