Description

XWW是个影响力很大的人,他有很多的追随者。这些追随者都想要加入XWW教成为XWW的教徒。但是这并不容易,需要通过XWW的考核。

XWW给你出了这么一个难题:XWW给你一个N × N的正实数矩阵A,满足XWW性。

称一个N × N的矩阵满足XWW性当且仅当:(1)A[N][N]=0;(2)矩阵中每行的最后一个元素等于该行前N-1个数的和;(3)矩阵中每列的最后一个元素等于该列前N-1个数的和。

现在你要给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然满足XWW性。同时XWW还要求A中的元素之和尽量大。

Input

第一行一个整数N,N ≤ 100。

接下来N行每行包含N个绝对值小于等于1000的实数,最多一位小数。

Output

输出一行,即取整后A矩阵的元素之和的最大值。无解输出No。

Sample Input

4

3.1 6.8 7.3 17.2

9.6 2.4 0.7 12.7

3.6 1.2 6.5 11.3

16.3 10.4 14.5 0

Sample Output

129

HINT

【数据规模与约定】

有10组数据,n的大小分别为10,20,30...100。

【样例说明】

样例中取整后满足XWW性的和最大的矩阵为:

3 7 8 18

10 3 0 13

4 1 7 12

17 11 15 0

题解

有源汇有上下界网络流 ,

因为是可以向上或者是向下取整,那也就是说一个数他的变化范围是[(int)a[i][j] , (int)a[i][j]+1];

从S向每一行连边 ,容量范围是[(int)a[i][n] , (int)a[i][n]+1];

从每一列向T连边, 容量范围是[(int)a[n][i] , (int)a[n][i]+1];

然后 第i行向第j列连[(int)a[i][j] , (int)a[i][j]+1] 的边

对于 1.0 这种 x.0 的不用连边 , 但是要留出去下限(我居然直接略过了。。。)

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
const int N = 1e4+100 , inf = 1e8;
inline int read()
{
register int x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n , S , T , s , t , cnt = 1 , sum;
double a[120][120];
int head[N] , b[120][120] , du[N] , d[N];
struct edge{ int v , nex , c; } e[N<<4];
inline void add(int u , int v , int c) { e[++cnt].v = v; e[cnt].nex = head[u]; e[cnt].c = c; head[u] = cnt; e[++cnt].v = u; e[cnt].nex = head[v]; e[cnt].c = 0; head[v] = cnt; return ; }
queue<int> q;
bool bfs()
{
for(int i = 1 ; i <= T+2 ; ++i) d[i] = 0; q.push(S); d[S] = 1;
while(q.size())
{
int x = q.front(); q.pop();
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(d[v] || e[i].c == 0) continue;
d[v] = d[x] + 1; q.push(v);
}
}
return d[T] != 0;
} int dfs(int x , int flow)
{
if(x == T || flow == 0) return flow;
int res = 0 , k;
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v;
if(d[v] == d[x] + 1 && e[i].c)
{
k = dfs(v , min(e[i].c , flow));
if(k) { e[i].c -= k; e[i^1].c += k; res += k; flow -= k; if(flow == 0) return res; }
else d[v] = 0;
}
}
return res;
} int Dinic()
{
int ans = 0;
while(bfs()) ans += dfs(S , inf);
return ans;
} void solve()
{
s = n*2+1; t = s+1; S = t+1; T = S+1;
for(int i = 1 ; i <= n ; ++i) for(int j = 1 ; j <= n ; ++j) b[i][j] = (int)a[i][j];
for(int i = 1 ; i < n ; ++i)
{
if(a[i][n] != b[i][n]) add(s , i , 1);
du[s] -= b[i][n]; du[i] += b[i][n]; // 相等
if(a[n][i] != b[n][i]) add(i+n , t , 1);
du[i+n] -= b[n][i]; du[t] += b[n][i];
}
for(int i = 1 ; i < n ; ++i) for(int j = 1 ; j < n ; ++j)
{
if(a[i][j] != b[i][j]) add(i , j+n , 1);
du[i] -= b[i][j]; du[j+n] += b[i][j];
}
for(int i = 1 ; i <= T ; ++i) if(du[i] > 0) add(S , i , du[i]) , sum += du[i]; else if(du[i] < 0) add(i , T , -du[i]);
add(t , s , inf);
int ans = Dinic();
if(ans != sum) puts("No");
else
{
S = s; T = t;
cout << Dinic() * 3 << '\n';
}
return ;
} int main()
{
n = read();
for(int i = 1 ; i <= n ; ++i) for(int j = 1 ; j <= n ; ++j) scanf("%lf" , &a[i][j]);
solve();
return 0;
}

BZOJ 3698: XWW的难题的更多相关文章

  1. BZOJ 3698: XWW的难题 [有源汇上下界最大流]

    3698: XWW的难题 题意:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和.给A中的数进行取整操作(可以是 ...

  2. BZOJ 3698: XWW的难题(有源汇上下界最大流)

    题面 XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A, ...

  3. BZOJ 3698 XWW的难题:有上下界的最大流

    传送门 题意 给你一个 $ n*n $ 的正实数矩阵 $ A $ ,满足XWW性. 称一个 $ n*n $ 的矩阵满足XWW性当且仅当: $ A[n][n] = 0 $ 矩阵中每行的最后一个元素等于该 ...

  4. bzoj 3698 XWW的难题(有源汇的上下界最大流)

    [题意] 对每个格子确定上下取整,使得满足1.A[n][n]=0 2.每行列前n-1个之和为第n个 3.格子之和尽量大. [思路] 设格子(i,j)上下取整分别为up(i,j)down(i,j),构图 ...

  5. BZOJ.3698.XWW的难题(有源汇上下界最大流ISAP)

    题目链接 按套路行列作为两部分,连边 \(S->row->column->T\). S向代表行的元素连边cap(A[i][n])(容量上下界为上下取整),代表列的元素向T连边cap( ...

  6. 3698: XWW的难题[有源汇上下界最大流]

    3698: XWW的难题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 354  Solved: 178[Submit][Status][Discus ...

  7. [BZOJ3698] XWW的难题 网络流

    3698: XWW的难题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 533  Solved: 275[Submit][Status][Discus ...

  8. 【BZOJ3698】XWW的难题 有上下界的最大流

    [BZOJ3698]XWW的难题 Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了 ...

  9. XWW的难题(bzoj 3698)

    Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N ...

随机推荐

  1. 杭电-------2043密码(C语言写)

    #include<stdio.h> #include<string.h> ]; ] = { '~','!','@','#','$','%','^' }; ] = { }; in ...

  2. 云服务器centos系统安装python

    1.查看python的版本 $ cd /usr/bin/$ ls python* $ ls -al python* //查看依赖关系 2.如果版本不合适可以卸载python再重新安装 # rpm -q ...

  3. 一个故事看懂Linux文件权限管理

    前情回顾: 我通过open这个系统调用虫洞来到了内核空间,又在老爷爷的指点下来到了sys_open的地盘,即将开始打开文件的工作. 详情参见:内核地址空间大冒险:系统调用 open系统调用链 我是一个 ...

  4. Jenkins新建节点找不到通过Java web启动代理?

    参考博客:Jenkins新建节点,启动方式没有“通过Java Web启动代理”选项怎么办? 在Jenkins中,打开“系统管理”→“管理节点”→“新建节点”页面时,“启动方式”选项没有“通过Java ...

  5. 解决 webpack-dev-server 不能使用 IP 访问

    webpack 是众所周知很好用的打包工具,在开发 vue 项目时,vue-cli 就集成了 webpack.我们启一个服务:npm run dev然后在浏览器可是使用 http://localhos ...

  6. margin合并及解决办法

    外边距合并指的是,当两个垂直外边距相遇时,它们将形成一个外边距. 合并后的外边距的高度等于两个发生合并的外边距的高度中的较大者 水平方向不会发生合并 只有普通文档流中块框的垂直外边距才会发生外边距合并 ...

  7. vue垂死挣扎--遇到的问题

    1, 原生js监听浏览器后退及禁用返回 +. 涉及到的history的知识 2, watch监听路由变化

  8. 15.Android-实现TCP客户端,支持读写

    在上章14.Android-使用sendMessage线程之间通信我们学习了如何在线程之间发送数据. 接下来我们便来学习如何通过socket读写TCP. 需要注意的是socket必须写在子线程中,不能 ...

  9. 微信小程序组件构建UI界面小练手 —— 表单登录注册微信小程序

    通过微信小程序中丰富的表单组件来完成登录界面.手机快速注册界面.企业用户注册界面的微信小程序设计. 将会用到view视图容器组件.button按钮组件.image图片组件.input输入框组件.che ...

  10. mysql必知必会--使用数据处理函数

    函数 与其他大多数计算机语言一样,SQL支持利用函数来处理数据.函数 一般是在数据上执行的,它给数据的转换和处理提供了方便. 在前一章中用来去掉串尾空格的 RTrim() 就是一个函数的例子 函数没有 ...