$CH$3801 $Rainbow$的信号 期望+位运算
正解:位运算
解题报告:
其实就是个位运算,,,只是顺便加了个期望的知识点$so$期望的帕并不难来着$QwQ$
先把期望的皮扒了,就直接分类讨论下,不难发现,答案分为两个部分
$\left\{\begin{matrix}l=r & \frac{1}{n}\cdot\frac{1}{n}=\frac{1}{n^{2}}\\ \\ l\neq r & \frac{2}{n}\cdot\frac{1}{n}=\frac{2}{n^{2}}\end{matrix}\right.$
这样就只要求出值,然后乘以概率就得到期望辽$QwQ$
然后现在的问题就变成了,怎么快速求出所有区间的$xor$和,$and$和,$or$和
可以发现每一位互不影响,所以对每一位都扒出来,然后单独看这一位,只要能求出这一位中有多少个子区间满足通过$xor$/$and$/$or$运算之后是1,乘以$2^{k}$即可
(啊这儿说下,,,因为$l=r$的情况直接枚举每一个数直接算就好,$so$下面所有讨论的都是$l\neq r$的来着
先说$and$和趴,考虑先枚举一个右端点$r$,考虑$and$的性质,所以考虑找到前面第一个0出现的位置$lst_{0}$,如果这一位也为1,那么左端点就可以取$[lst_{0}+1,r-1]$,就欧克了
对于$or$和的话,依然考虑枚举右端点$r$,找到前一个1出现的位置$lst_{1}$,如果这一位为1,那么左端点可以取$[1,r-1]$,如果这一位不为0,那么左端点可以取$[1,lst_{1}]$
最后说下$xor$和,因为这个相对而言复杂一些$so$放到最后港$QwQ$
首先依然是枚举右端点$r$,因为$xor$的性质,所以考虑找到所有为1的点,然后根据这些点进行黑白染色,就会是左端点可以取所有白段($umm$其实因为我都还麻油说黑白色是染啥$but$意会下能$get$的趴,,,懒得详细说了,画图应该会好理解些但我懒得画鸭$QAQ$
然后考虑怎么递推,不难发现,从$r$变成$r+1$,首先会是黑段长度++,然后这儿要分类讨论下,就当$r$点是1的时候,要交换下黑段和白段的长度,意会下,非常显然不想详细港了
综上,这题做完辽
具体看代码趴$QAQ$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define lf double
#define int long long
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i) const int N=1e5+;
int n,a[N],lst[],p[],as_xor,as_and,as_or; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
} main()
{
n=read();rp(i,,n)a[i]=read(),as_xor=as_and=as_or=as_xor+a[i];
rp(i,,)
{
lst[]=lst[]=p[]=p[]=;
rp(j,,n)
{
ri dat=(a[j]>>i)&;
if(dat)
{
as_and+=2ll*(j-lst[]-)*(<<i);
as_or+=2ll*(j-)*(<<i);
as_xor+=2ll*p[]*(<<i);
swap(p[],p[]);
++p[];lst[]=j;
}
else
{
as_or+=2ll*lst[]*(<<i);
as_xor+=2ll*p[]*(<<i);
++p[];lst[]=j;
}
}
}
printf("%.3lf %.3lf %.3lf",(lf)as_xor/(1ll*n*n),(lf)as_and/(1ll*n*n),(lf)as_or/(1ll*n*n));
return ;
}
这儿是代码$qwq$
对了说个细节,,,
就是这题好像有点儿卡精度,,,?如果在过程中边做边除好像就必须是/$n$/$n$,改成/$n^{2}$好像就会爆炸,,,
然后这儿的建议是过程中不除,,,直接在结尾一块儿除,,,但是这样的话就记得全程开$ll$,,,我的话是直接$define\ int\ long\ long$了,注意下$QwQ$
$over!$
随机推荐
- Flask学习之六 个人资料和头像
英文博客地址:http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-vi-profile-page-and-avatars ...
- day3_python之函数返回值、语句形式、表达式形式
一. 函数对象 1. 函数是第一类对象,即函数可以当作数据传递 #1 可以被引用 #2 可以当作参数传递 #3 返回值可以是函数 #3 可以当作容器类型的元素 二.返回值 return的返回值没有类型 ...
- 1878: [SDOI2009]HH的项 莫队算法-离线查询区间内部不同数字的个数
#include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> ...
- [Err] 1062 - Duplicate entry '0' for key 'PRIMARY'
问题描述: sql语句执行的时候,插入语句无法正确执行 问题原因: 主键 重复 出现 0 解决方案: 将主键设置为自增 然而,设置自增后还是可能会出现下面的问题 #1062 – Duplicate e ...
- Python--day26--封装和@property
---恢复内容开始--- @property:修饰过的方法不能传任何参数,把方法伪装成属性,没有这个装饰就像c1.area()这样调用,少了一个括号,没什么用. @name.setter:实现可以修改 ...
- Spring Security-利用URL地址进行权限控制
目的是:系统内存在很多不同的用户,每个用户具有不同的资源访问权限,具体表现就是某个用户对于某个URL是无权限访问的.需要Spring Security忙我们过滤. 参考:http://www.cnbl ...
- [转]在eclipse中,用maven创建一个web项目工程
1.在eclipse中用maven创建项目,右键new>>Maven Project 2.点击next继续 3.点击next继续,选择maven-archetype-webapp, 4.点 ...
- Vue 语法的一些小问题
设置 sty行内样式 :style="{width:mapWidth,height:mapHeight}" This指向 axios 使用axios 的时候 ,在生命周期函数 ...
- 2019-1-4-win10-uwp-win2d-CanvasVirtualControl-与-CanvasAnimatedControl
title author date CreateTime categories win10 uwp win2d CanvasVirtualControl 与 CanvasAnimatedControl ...
- 如何查看 Python 全部内置变量和内置函数?
https://jingyan.baidu.com/article/7082dc1c071649e40a89bdb8.html Python 解释器内置了一些常量和函数,叫做内置常量(Built-in ...