【合集】有标号的DAG图计数(合集)
【合集】有标号的DAG图计数(合集)
orz 1tst
【合集】有标号的DAG图计数(合集)的更多相关文章
- 有标号的DAG图计数1~4
前言 我什么都不会,菜的被关了起来. 有标号的DAG图I Solution 考虑递推,设\(f_i\)表示i个点的答案,显然这个东西是可以组合数+容斥递推? 设\(f_i\)表示i个点的答案,我们考虑 ...
- COGS 有标号的DAG/强连通图计数
COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的 ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- COGS2353 【HZOI2015】有标号的DAG计数 I
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 10007的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 提 ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
随机推荐
- 模板—FFT
卷积:$C[i]=\sum \limits_{j=0}^{i}A[j]*B[i-j]$可以画图理解一下其实就是交叉相乘的和. 卷积可以看作两个多项式乘积的形式,只不过求出的结果的项数不同. FFT讲解 ...
- Android教程-02 在程序中输出Log
视频教程,建议采用超清模式观看 在Android中一般都用Log输出日志,常见的有5个不同的级别 Log.v() Log.d() Log.i() Log.w() Log.e() 当然很多程序员还比较习 ...
- angularJS $q
1.$q $q是Angular的一种内置服务,它可以使你异步地执行函数,并且当函数执行完成时它允许你使用函数的返回值(或异常). 2.defer defer的字面意思是延迟, $q.defer() ...
- H3C 网络接口层
- H3C 对等通信
- js 数组的拼接
数组的拼接 var a = [1,2,3,4,5,6]; var b=["foo","bar", "fun"]; 最终的结果是: [ 1,2 ...
- HDU 2601
题意:给出一个n求出n=i*j+i+j共有几种组合,i,j>0. 开始挺傻的.没想到化成因式的乘积.- - . 思路:i*j+i+j=(i+1)*(j+1)=n+1 #include<io ...
- servicemix-3.2.1 部署异常
<jbi-task xmlns="http://java.sun.com/xml/ns/jbi/management-message" version="1.0&q ...
- linux设备驱动文件结构
struct file, 定义于 <linux/fs.h>, 是设备驱动中第二个最重要的数据结构. 注意 file 与用户空间程序的 FILE 指针没有任何关系. 一个 FILE 定义在 ...
- UVa 1374 - Power Calculus——[迭代加深搜索、快速幂]
解题思路: 这是一道以快速幂计算为原理的题,实际上也属于求最短路径的题目类型.那么我们可以以当前求出的幂的集合为状态,采用IDA*方法即可求解.问题的关键在于如何剪枝效率更高.笔者采用的剪枝方法是: ...