【大数据】Spark-Hadoop-架构对比
Spark-Hadoop-架构对比
- spark executor - zyc920716的博客 - CSDN博客
- 董的博客 » Apache Spark探秘:多进程模型还是多线程模型?
- Apache Spark的高性能一定程度上取决于它采用的异步并发模型(这里指server/driver端采用的模型),这与Hadoop 2.0(包括YARN和MapReduce)是一致的。Hadoop 2.0自己实现了类似Actor的异步并发模型,实现方式是epoll+状态机,而Apache Spark则直接采用了开源软件Akka,该软件实现了Actor模型,性能非常高。尽管二者在server端采用了一致的并发模型,但在任务级别(特指Spark任务和MapReduce任务)上却采用了不同的并行机制:Hadoop MapReduce采用了多进程模型,而Spark采用了多线程模型。
注意,本文的多进程和多线程,指的是同一个节点上多个任务的运行模式。无论是MapReduce和Spark,整体上看,都是多进程:MapReduce应用程序是由多个独立的Task进程组成的;Spark应用程序的运行环境是由多个独立的Executor进程构建的临时资源池构成的。
多进程模型便于细粒度控制每个任务占用的资源,但会消耗较多的启动时间,不适合运行低延迟类型的作业,这是MapReduce广为诟病的原因之一。而多线程模型则相反,该模型使得Spark很适合运行低延迟类型的作业。总之,Spark同节点上的任务以多线程的方式运行在一个JVM进程中,可带来以下好处:
1)任务启动速度快,与之相反的是MapReduce Task进程的慢启动速度,通常需要1s左右;
2)同节点上所有任务运行在一个进程中,有利于共享内存。这非常适合内存密集型任务,尤其对于那些需要加载大量词典的应用程序,可大大节省内存。
3)同节点上所有任务可运行在一个JVM进程(Executor)中,且Executor所占资源可连续被多批任务使用,不会在运行部分任务后释放掉,这避免了每个任务重复申请资源带来的时间开销,对于任务数目非常多的应用,可大大降低运行时间。与之对比的是MapReduce中的Task:每个Task单独申请资源,用完后马上释放,不能被其他任务重用,尽管1.0支持JVM重用在一定程度上弥补了该问题,但2.0尚未支持该功能。
尽管Spark的过线程模型带来了很多好处,但同样存在不足,主要有:
1)由于同节点上所有任务运行在一个进程中,因此,会出现严重的资源争用,难以细粒度控制每个任务占用资源。与之相反的是MapReduce,它允许用户单独为Map Task和Reduce Task设置不同的资源,进而细粒度控制任务占用资源量,有利于大作业的正常平稳运行。
下面简要介绍MapReduce的多进程模型和Spark的多线程模型。
(1) MapReduce多进程模型

1) 每个Task运行在一个独立的JVM进程中;
2) 可单独为不同类型的Task设置不同的资源量,目前支持内存和CPU两种资源;
3) 每个Task运行完后,将释放所占用的资源,这些资源不能被其他Task复用,即使是同一个作业相同类型的Task。也就是说,每个Task都要经历“申请资源—> 运行Task –> 释放资源”的过程。
(2) Spark多线程模型

1) 每个节点上可以运行一个或多个Executor服务;
2) 每个Executor配有一定数量的slot,表示该Executor中可以同时运行多少个ShuffleMapTask或者ReduceTask;
3) 每个Executor单独运行在一个JVM进程中,每个Task则是运行在Executor中的一个线程;
4) 同一个Executor内部的Task可共享内存,比如通过函数SparkContext#broadcast广播的文件或者数据结构只会在每个Executor中加载一次,而不会像MapReduce那样,每个Task加载一次;
5) Executor一旦启动后,将一直运行,且它的资源可以一直被Task复用,直到Spark程序运行完成后才释放退出。
总体上看,Spark采用的是经典的scheduler/workers模式,每个Spark应用程序运行的第一步是构建一个可重用的资源池,然后在这个资源池里运行所有的ShuffleMapTask和ReduceTask(注意,尽管Spark编程方式十分灵活,不再局限于编写Mapper和Reducer,但是在Spark引擎内部只用两类Task便可表示出一个复杂的应用程序,即ShuffleMapTask和ReduceTask),而MapReduce应用程序则不同,它不会构建一个可重用的资源池,而是让每个Task动态申请资源,且运行完后马上释放资源。
【大数据】Spark-Hadoop-架构对比的更多相关文章
- 老李分享:大数据框架Hadoop和Spark的异同 1
老李分享:大数据框架Hadoop和Spark的异同 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨 ...
- 《大数据Spark企业级实战 》
基本信息 作者: Spark亚太研究院 王家林 丛书名:决胜大数据时代Spark全系列书籍 出版社:电子工业出版社 ISBN:9787121247446 上架时间:2015-1-6 出版日期:20 ...
- 大数据技术Hadoop入门理论系列之一----hadoop生态圈介绍
Technorati 标记: hadoop,生态圈,ecosystem,yarn,spark,入门 1. hadoop 生态概况 Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用 ...
- 王家林 大数据Spark超经典视频链接全集[转]
压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan ...
- [Hadoop 周边] 浅谈大数据(hadoop)和移动开发(Android、IOS)开发前景【转】
原文链接:http://www.d1net.com/bigdata/news/345893.html 先简单的做个自我介绍,我是云6期的,黑马相比其它培训机构的好偶就不在这里说,想比大家都比我清楚: ...
- 大数据和Hadoop生态圈
大数据和Hadoop生态圈 一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop ...
- 大数据和hadoop有什么关系?
本文资料来自百度文库相关文档 Hadoop,Spark和Storm是目前最重要的三大分布式计算系统,Hadoop常用于离线的复杂的大数据处理,Spark常用于离线的快速的大数据处理,而Storm常用于 ...
- 大数据与Hadoop
figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...
- Hadoop专业解决方案-第1章 大数据和Hadoop生态圈
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop生态圈小组已经翻译完成,在此 ...
- 大数据除了Hadoop还有哪些常用的工具?
大数据除了Hadoop还有哪些常用的工具? 1.Hadoop大数据生态平台Hadoop 是一个能够对大量数据进行分布式处理的软件框架.但是 Hadoop 是以一种可靠.高效.可伸缩的方式进行处理的.H ...
随机推荐
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) E. Tree Folding 拓扑排序
E. Tree Folding 题目连接: http://codeforces.com/contest/765/problem/E Description Vanya wants to minimiz ...
- httpwatch抓包工具的使用方法
火狐浏览器下有著名的httpfox,而HttpWatch则是IE下强大的网页数据分析工具.这个工具到底有哪些具体功能呢?这个我就不再赘述了,百度百科上列的很全面,但也比较抽象.我只想说我曾经用这个工具 ...
- Sed&awk笔记之sed篇(转)
Sed是什么 <sed and awk>一书中(1.2 A Stream Editor)是这样解释的: Sed is a "non-interactive" strea ...
- Beego开源项目 收藏
官方收藏的项目 集成开发平台:基于 Golang 的快速开发平台,平台已经集成权限管理,菜单资源管理,域管理,角色管理,用户管理,组织架构管理,操作日志管理等等 OPMS - 是一款项目管理 + OA ...
- kernel logo到开机动画之间闪现黑屏(android 5.X)
在BootAnimation開始画图之前,会先做一次clear screen的动作,避免出现前面的图干扰到BootAnimation的显示. 通过check main_log先确认播放开机动画是哪个f ...
- Revit API修改保温层厚度
start [Transaction(TransactionMode.Manual)] [Regeneration(RegenerationOption.Manual)] ;, newLayer); ...
- 在 DELPHI 中 procedure 型变量与 method 型变量的区别
Procedure型变量: 在DELPHI中,函数.过程的地址可以赋给一个特殊类型的变量,变量可用如下方式声明: var p : procedure(num:integer); //过程 或: var ...
- C#输出到Release VS中Release模式下生成去掉生成pdb文件
Release 与 Debug 的区别就不多说了, 简单来说 Release 优化过, 性能高一些. Debug 为方便调试. 默认情况下是 Debug, 那如何改成 Release 呢? 项目上右键 ...
- WordPress主题开发:WP_Query常用参数
常用参数 用途 调用文章或页面 s 查询和某个关键词相关的所有的文章/页面信息 p 文章或页面id post__in 多篇id post__not_in 多篇id以外 post_type 查询的信息类 ...
- C语言之基本算法24—黄金切割法求方程近似根
//黄金切割法! /* ================================================================ 题目:用黄金切割法求解3*x*x*x-2*x* ...