题目链接:http://lightoj.com/volume_showproblem.php?problem=1038

题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让N=N/d, 求N变成1的次数的期望;

当 N = 2 时 2有两个因子:1,2

E[2] = E[1]/2 + E[2]/2 + 1;因此可以求出E[2];

当N = 8 时 8有4个因子1 2 4 8;

E[8] = E[1]/4 + E[2]/4 + E[4]/4 + E[8]/4+ 1;因此可以求出E[8];

......

我们用 E[i] 表示 i 变成 1 的次数期望;那么E[i] = E[a[1]]/cnt + E[a[2]]/cnt + ... + E[a[cnt]]/cnt + 1;(加1是因为本次除了一次);

其中cnt为 i 的因子个数,a数组为 i 的因子集合,如果按从小到大的顺序排列 则 a[1] = 1, a[cnt] = i;

所以上式中的a[cnt]替换为i;整理可得 E[i] = (E[a[1]]+E[a[2]]+ ... +E[a[cnt-1]]+cnt)/(cnt-1);

#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
using namespace std;
#define N 100005
#define met(a, b) memset(a, b, sizeof(a))
#define MOD 110119 typedef long long LL; double dp[N]; void Init()
{
dp[] = ;
for(int i=; i<N; i++)
{
double sum = ;
int cnt = ;
for(int j=; j*j<=i; j++)
{
if( i%j == )
{
cnt++;
sum += dp[j];
if(j*j != i)
{
cnt ++;
sum += dp[i/j];///j是i的因子,i/j也是i的因子;
}
}
}
sum += cnt;
dp[i] = sum/(cnt-);
}
} int main()
{
Init();
int T, t = , n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("Case %d: %.6f\n", t++, dp[n]);
}
return ;
}

LightOJ 1038 - Race to 1 Again(期望+DP)的更多相关文章

  1. Lightoj 1038 - Race to 1 Again (概率DP)

    题目链接: Lightoj  1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少 ...

  2. LightOJ - 1038 Race to 1 Again —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Foru ...

  3. LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)

    题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...

  4. Lightoj 1038 - Race to 1 Again【期望+dp】

    题目:戳这里 题意:一个数字n不断迭代地除以自身的因子得到1.求这个过程中操作除法次数的期望. 解题思路: 求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案.因为每个数都有个共同的最终状态1 ...

  5. LightOJ 1038 Race to 1 Again(概率dp+期望)

    https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的 ...

  6. LightOJ - 1038 Race to 1 Again 递推+期望

    题目大意:给出一个数,要求你按一定的规则将这个数变成1 规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子.用D除上这个因子,然后继续按该规则运算.直到该数变成1 问变成1的期望步数是多少 ...

  7. lightoj 1038 Race to 1 Again

    题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M ...

  8. LightOJ - 1287 Where to Run (期望dp+记忆化)

    题面: Last night you robbed a bank but couldn't escape and when you just got outside today, the police ...

  9. Race to 1 Again LightOJ - 1038

    Race to 1 Again LightOJ - 1038 题意:有一个数字D,每次把D变为它的一个因数(变到所有因数的概率相等,可能是本身),变到1后停止.求对于某个初始的D变到1的期望步数. x ...

随机推荐

  1. Top 20 NuGet packages for captcha

    Top 20 NuGet packages for captcha CaptchaMvc.Mvc4 CaptchaMvc will implement your web MVC application ...

  2. Ansible 安装和管理服务

    ansible 使用 yum 模块来安装软件包,使用 service 模块来启动软件: [root@localhost ~]$ ansible 192.168.119.134 -m yum -a &q ...

  3. 使用 urllib 处理 Cookies 信息

    如何获取 Cookies : import urllib.request import http.cookiejar cookies = http.cookiejar.CookieJar() # 先声 ...

  4. Apache Kafka 1.0.0正式发布!

    千呼万唤始出来,经过7年的发展与完善,Apache Kafka 1.0.0正式发布!在笔者看来,比起1.0.0引入的新功能,此版本最大的意义在于标识Kafka各种组件功能的稳定性.不过我们还是来看下1 ...

  5. ISD9160学习笔记05_ISD9160语音识别代码分析

    前言 语音识别是特别酷的功能,ISD9160的核心卖点就是这个语音识别,使用了Cybron VR 算法. 很好奇这颗10块钱以内的IC是如何实现人家百来块钱的方案.且听如下分析. 本文作者twowin ...

  6. 安装ubuntu后,你的屏幕尺寸太小,无法设置,该怎么解决

    安装完虚拟机之后,你的Ubuntu可能会在尺寸很小,(这种情况可能有,可能没有) 想要点击设置,选中Display里的分辨率下拉框,但是却因为这个窗口太大,无法点击apply按钮.悲剧啦!!! Ctr ...

  7. 详解SQL中的GROUP BY语句

    下面为您介绍SQL语句中GROUP BY 语句,GROUP BY 语句用于结合合计函数,根据一个或多个列对结果集进行分组. 希望对您学习SQL语句有所帮助. SQL GROUP BY 语法 SELEC ...

  8. spring基础---->请求与响应的参数(一)

    这里面我们主要介绍一下spring中关于请求和响应参数数据的问题.爱,从来就是一件千回百转的事.不曾被离弃,不曾受伤害,怎懂得爱人?爱,原来是一种经历. spring中的请求与响应 一.spring中 ...

  9. 【大数据系列】节点的退役和服役[datanode,yarn]

    一.datanode添加新节点 1 在dfs.include文件中包含新节点名称,该文件在名称节点的本地目录下 [白名单] [s201:/soft/hadoop/etc/hadoop/dfs.incl ...

  10. makefile高级应用

    https://www.zybuluo.com/lishuhuakai/note/206938 make是Linux下的一款程序自动维护工具,配合makefile的使用,就能够根据程序中模块的修改情况 ...