POJ 3683 Priest John's Busiest Day (2-SAT)
|
Priest John's Busiest Day
Description John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings. Note that John can not be present at two weddings simultaneously. Input The first line contains a integer N ( 1 ≤ N ≤ 1000). Output The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies. Sample Input 2 Sample Output YES Source POJ Founder Monthly Contest – 2008.08.31, Dagger and Facer
|
||||||||||
题意:一个小镇里面只有一个牧师,现在有些新人要结婚,需要牧师分别去主持一个仪式,给出每对新人婚礼的开始时间 s 和结束时间 t ,还有他们俩的这个仪式需要的时间(每对新人需要的时间长短可能不同) d ,牧师可以在婚礼开始的时间 d 内(s 到 s+d)或者是结束前的时间 d 内(t - d 到 t)完成这个仪式。现在问能否给出一种安排,让牧师能完成所有夫妇婚礼的仪式,如果可以,输出一种安排。
我们把每个婚礼可能的两个时间段看做两个点 A 和 A’,显然,如果两个时间段冲突(比如 A 和 B 的时间重合),那么需要建边(A -> B' ),(B -> A‘),判断出是否存在解后,需要输出一组解,这里的方法是 赵爽 的《2-SAT 解法浅析》里面看的,有详细的证明。
具体操作就是:求强联通,缩点重新建图(这里建反向图,参见论文),然后给图中的点着色,将一个未着色点 x 上色同时,把与它矛盾的点 y 以及 y 的所有子孙节点上另外一种颜色,上色完成后,进行拓扑排序,选择一种颜色的点输出就是一组可行解。
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int VM=;
const int EM=; struct Point{
int st,et;
}p[VM]; struct Edge{
int frm,to,nxt;
}edge1[EM<<],edge2[EM<<]; int n,m,tot,cnt1,cnt2,dep,top,atype,head1[VM],head2[VM];
int dfn[VM],low[VM],vis[VM],belong[VM],indeg[VM];
int stack[VM],ans[VM],mark[VM],color[VM],que[VM]; //color[]为是否选择标志 //1表示选择,0表示不选择 void Init(){
cnt1=, cnt2=, atype=, dep=, top=, tot=;
memset(head1,-,sizeof(head1));
memset(head2,-,sizeof(head2));
memset(vis,,sizeof(vis));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
memset(indeg,,sizeof(indeg));
memset(ans,,sizeof(ans));
memset(mark,,sizeof(mark));
memset(color,,sizeof(color));
} void addedge1(int cu,int cv){ //原图增加一条边
edge1[cnt1].frm=cu; edge1[cnt1].to=cv; edge1[cnt1].nxt=head1[cu];
head1[cu]=cnt1++;
} void addedge2(int cu,int cv){ //缩点图增加一条边
edge2[cnt2].frm=cu; edge2[cnt2].to=cv; edge2[cnt2].nxt=head2[cu];
head2[cu]=cnt2++;
} int judge(int a,int b){
if( p[a].et <= p[b].st || p[b].et <= p[a].st )return ;
return ;
} void Tarjan(int u){ //Tarjan算法求强连通分量
dfn[u]=low[u]=++dep;
stack[top++]=u;
vis[u]=;
for(int i=head1[u];i!=-;i=edge1[i].nxt){
int v=edge1[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=stack[--top];
belong[j]=atype;
vis[j]=;
}while(u!=j);
}
} void solve(){
for(int i=;i<n;i++) //n表示点的个数
if(!dfn[i])
Tarjan(i);
int flag=;
for(int i=;i<m;i++){ //共 m 场婚礼,注意这里的m=n/2
if(belong[*i]==belong[*i+]){
flag=;
break;
}
//这里,为着色做准备,mark[x]保存的是和编号为 x 的连通分量矛盾的连通分量的编号
//在赵爽的论文中有证明,这样可以保证拓扑求解的可行性
//b 和 b' 所在的连通分量是矛盾的(如果不矛盾,那么2-SAT无解)
mark[ belong[*i] ]=belong[*i+];
mark[ belong[*i+] ]=belong[*i];
}
if(flag==){
printf("NO\n");
return ;
}
printf("YES\n");
for(int i=;i<cnt1;i++)
if(belong[edge1[i].frm]!=belong[edge1[i].to]){
addedge2(belong[edge1[i].to],belong[edge1[i].frm]);
indeg[belong[edge1[i].frm]]++;
} int head=,tail=; //拓扑排序求解
for(int i=;i<=atype;i++)
if(indeg[i]==) //入度为0入队列
que[tail++]=i;
while(head<tail){
int u=que[head++];
if(color[u]==){ //对于未着色的点x,将x染成红色1,同时将与x矛盾的点cf[x]染成蓝色-1。
color[u]=;
color[mark[u]]=-;
}
for(int i=head2[u];i!=-;i=edge2[i].nxt){
int v=edge2[i].to;
if(--indeg[v]==) //入度为0
que[tail++]=v; //入队列
}
} int a,b,c,d;
for(int i=;i<m;i++){
if(color[ belong[*i] ]==){//如果颜色和所选颜色相同,输出点 b
a=p[*i].st/;
b=p[*i].st%;
c=p[*i].et/;
d=p[*i].et%;
printf("%02d:%02d %02d:%02d\n",a,b,c,d);
}
else{//否则输出点 b'
a=p[*i+].st/;
b=p[*i+].st%;
c=p[*i+].et/;
d=p[*i+].et%;
printf("%02d:%02d %02d:%02d\n",a,b,c,d);
}
}
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d",&m)){
Init();
int a,b,c,d,t;
for(int i=;i<m;i++){
scanf("%d:%d %d:%d %d",&a,&b,&c,&d,&t);
int t1=*a+b, t2=*c+d;
p[tot].st=t1, p[tot++].et=t1+t;
p[tot].st=t2-t, p[tot++].et=t2;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
if(i!=j){
if(judge(*i,*j)==) addedge1(*i,*j+);
if(judge(*i,*j+)==) addedge1(*i,*j); if(judge(*i+,*j)==) addedge1(*i+,*j+);
if(judge(*i+,*j+)==) addedge1(*i+,*j);
}
n=tot; //n表示点的个数
solve();
}
return ;
}
POJ 3683 Priest John's Busiest Day (2-SAT)的更多相关文章
- POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)
Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10010 Accep ...
- POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)
Description John is the only priest in his town. September 1st is the John's busiest day in a year b ...
- poj - 3683 - Priest John's Busiest Day(2-SAT)
题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所 ...
- POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)
POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...
- POJ 3683 Priest John's Busiest Day (2-SAT)
题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...
- POJ 3683 Priest John's Busiest Day (2-SAT,常规)
题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...
- POJ 3683 Priest John's Busiest Day[2-SAT 构造解]
题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...
- POJ 3683 Priest John's Busiest Day 【2-Sat】
这是一道裸的2-Sat,只要考虑矛盾条件的判断就好了. 矛盾判断: 对于婚礼现场 x 和 y,x 的第一段可以和 y 的第一段或者第二段矛盾,同理,x 的第二段可以和 y 的第一段或者第二段矛盾,条件 ...
- POJ 3683 Priest John's Busiest Day
看这个题目之前可以先看POJ2186复习一下强联通分量的分解 题意:给出N个开始时间和结束时间和持续时间三元组,持续时间可以在开始后或者结束前,问如何分配可以没有冲突. -----–我是分割线---- ...
随机推荐
- sql server 向mysql前移数据-单引号问题
sql server中的数据导出来 用两个单引号表示一个单引号,这样的格式可以录入到mysql中: 但是遇到特殊的中文字符,例如顿号等,不能正确的显示两个单引号: mysql导出来的数据用反斜线和一个 ...
- MAC升级nodejs和npm到最新版
第一步,先查看本机node.js版本: node -v 第二步,清除node.js的cache: sudo npm cache clean -f 第三步,安装 n 工具,这个工具是专门用来管理node ...
- php获取网址
#测试网址: http://localhost/blog/testurl.php?id=5 //获取域名或主机地址 echo $_SERVER['HTTP_HOST']."<br> ...
- js获取对象值的方式
js获取对象值的方式 var obj = {abc:"ss",nn:90}; var v1 = obj.abc;//使用点的方式 var v2 = obj["abc&qu ...
- [Canvas]RPG游戏雏形 (地图加载,英雄出现并移动)
源码请点此下载并用浏览器打开index.html观看 图例: 代码: <!DOCTYPE html> <html lang="utf-8"> <met ...
- python抓取数据,python使用socks代理抓取数据
在python中,正常的抓取数据直接使用urllib2 这个模块: import urllib2 url = 'http://fanyi.baidu.com/' stream = urllib2.ur ...
- 很好的vmware目录
http://www.globalknowledge.com/training/course.asp?pageid=9&courseid=18023&country=United+St ...
- All you should know about NUMA in VMware!
http://www.elasticvision.info/ All you should know about NUMA in VMware! Lets try answering some typ ...
- C++ 第八课 标准c字符和字符串
atof() 将字符串转换成浮点数 atoi() 将字符串转换成整数 atol() 将字符串转换成长整型数 isalnum() 当字母或数字字符时, 返回真值 isalpha() 当字母字符时, 返回 ...
- Spring 基础概念——DI、IOC(一)
一.IOC 控制反转 package com.qunar.studyspring.bean; import com.qunar.studyspring.dao.PersonDao; import co ...