Intro to Python for Data Science Learning 7 - 2D NumPy Arrays
2D NumPy Arrays
from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=9
Your First 2D NumPy Array
# Create baseball, a list of lists
baseball = [[180, 78.4],
[215, 102.7],
[210, 98.5],
[188, 75.2]]
# Import numpy
import numpy as np
# Create a 2D numpy array from baseball: np_baseball
np_baseball = np.array(baseball)
# Print out the type of np_baseball
print(type(np_baseball))
# Print out the shape of np_baseball. Use np_baseball.shape.
print(np_baseball.shape)
Baseball data in 2D form
Change list to 2D array, it will get a form with two columns.
# baseball is available as a regular list of lists
baseball = [[74, 180], [74, 215], [72, 210], [72, 210], [73, 188], [69, 176], [69, 209], [71, 200], [76, 231], [71, 180], [73, 188], [73, 180], [74, 185], [74, 160], [69, 180], [70, 185], [73, 189], [75, 185], [78, 219], [79, 230], [76, 205], [74, 230], [76, 195], [72, 180], [71, 192], [75, 225], [77, 203], [74, 195], [73, 182], [74, 188], [78, 200], [73, 180], [75, 200], [73, 200], [75, 245], [75, 240], [74, 215], [69, 185], [71, 175], [74, 199], [73, 200], [73, 215], [76, 200], [74, 205], [74, 206], [70, 186], [72, 188], [77, 220], [74, 210], [70, 195], [73, 200], [75, 200], [76, 212], [76, 224], [78, 210], [74, 205], [74, 220], [76, 195], [77, 200], [81, 260], [78, 228], [75, 270], [77, 200], [75, 210], [76, 190], [74, 220], [72, 180], [72, 205], [75, 210], [73, 220], [73, 211], [73, 200], [70, 180], [70, 190], [70, 170], [76, 230], [68, 155], [71, 185], [72, 185], [75, 200], [75, 225], [75, 225], [75, 220], [68, 160], [74, 205], [78, 235], [71, 250], [73, 210], [76, 190], [74, 160], [74, 200], [79, 205], [75, 222], [73, 195], [76, 205], [74, 220], [74, 220], [73, 170], [72, 185], [74, 195], [73, 220], [74, 230], [72, 180], [73, 220], [69, 180], [72, 180], [73, 170], [75, 210], [75, 215], [73, 200], [72, 213], [72, 180], [76, 192], [74, 235], [72, 185], [77, 235], [74, 210], [77, 222], [75, 210], [76, 230], [80, 220], [74, 180], [74, 190], [75, 200], [78, 210], [73, 194], [73, 180], [74, 190], [75, 240], [76, 200], [71, 198], [73, 200], [74, 195], [76, 210], [76, 220], [74, 190], [73, 210], [74, 225], [70, 180], [72, 185], [73, 170], [73, 185], [73, 185], [73, 180], [71, 178], [74, 175], [74, 200], [72, 204], [74, 211], [71, 190], [74, 210], [73, 190], [75, 190], [75, 185], [79, 290], [73, 175], [75, 185], [76, 200], [74, 220], [76, 170], [78, 220], [74, 190], [76, 220], [72, 205], [74, 200], [76, 250], [74, 225], [75, 215], [78, 210], [75, 215], [72, 195], [74, 200], [72, 194], [74, 220], [70, 180], [71, 180], [70, 170], [75, 195], [71, 180], [71, 170], [73, 206], [72, 205], [71, 200], [73, 225], [72, 201], [75, 225], [74, 233], [74, 180], [75, 225], [73, 180], [77, 220], [73, 180], [76, 237], [75, 215], [74, 190], [76, 235], [75, 190], [73, 180], [71, 165], [76, 195], [75, 200], [72, 190], [71, 190], [77, 185], [73, 185], [74, 205], [71, 190], [72, 205], [74, 206], [75, 220], [73, 208], [72, 170], [75, 195], [75, 210], [74, 190], [72, 211], [74, 230], [71, 170], [70, 185], [74, 185], [77, 241], [77, 225], [75, 210], [75, 175], [78, 230], [75, 200], [76, 215], [73, 198], [75, 226], [75, 278], [79, 215], [77, 230], [76, 240], [71, 184], [75, 219], [74, 170], [69, 218], [71, 190], [76, 225], [72, 220], [72, 176], [70, 190], [72, 197], [73, 204], [71, 167], [72, 180], [71, 195], [73, 220], [72, 215], [73, 185], [74, 190], [74, 205], [72, 205], [75, 200], [74, 210], [74, 215], [77, 200], [75, 205], [73, 211], [72, 190], [71, 208], [74, 200], [77, 210], [75, 232], [75, 230], [75, 210], [78, 220], [78, 210], [74, 202], [76, 212], [78, 225], [76, 170], [70, 190], [72, 200], [80, 237], [74, 220], [74, 170], [71, 193], [70, 190], [72, 150], [71, 220], [74, 200], [71, 190], [72, 185], [71, 185], [74, 200], [69, 172], [76, 220], [75, 225], [75, 190], [76, 195], [73, 219], [76, 190], [73, 197], [77, 200], [73, 195], [72, 210], [72, 177], [77, 220], [77, 235], [71, 180], [74, 195], [74, 195], [73, 190], [78, 230], [75, 190], [73, 200], [70, 190], [74, 190], [72, 200], [73, 200], [73, 184], [75, 200], [75, 180], [74, 219], [76, 187], [73, 200], [74, 220], [75, 205], [75, 190], [72, 170], [73, 160], [73, 215], [72, 175], [74, 205], [78, 200], [76, 214], [73, 200], [74, 190], [75, 180], [70, 205], [75, 220], [71, 190], [72, 215], [78, 235], [75, 191], [73, 200], [73, 181], [71, 200], [75, 210], [77, 240], [72, 185], [69, 165], [73, 190], [74, 185], [72, 175], [70, 155], [75, 210], [70, 170], [72, 175], [72, 220], [74, 210], [73, 205], [74, 200], [76, 205], [75, 195], [80, 240], [72, 150], [75, 200], [73, 215], [74, 202], [74, 200], [73, 190], [75, 205], [75, 190], [71, 160], [73, 215], [75, 185], [74, 200], [74, 190], [72, 210], [74, 185], [74, 220], [74, 190], [73, 202], [76, 205], [75, 220], [72, 175], [73, 160], [73, 190], [73, 200], [72, 229], [72, 206], [72, 220], [72, 180], [71, 195], [75, 175], [75, 188], [74, 230], [73, 190], [75, 200], [79, 190], [74, 219], [76, 235], [73, 180], [74, 180], [74, 180], [72, 200], [74, 234], [74, 185], [75, 220], [78, 223], [74, 200], [74, 210], [74, 200], [77, 210], [70, 190], [73, 177], [74, 227], [73, 180], [71, 195], [75, 199], [71, 175], [72, 185], [77, 240], [74, 210], [70, 180], [77, 194], [73, 225], [72, 180], [76, 205], [71, 193], [76, 230], [78, 230], [75, 220], [73, 200], [78, 249], [74, 190], [79, 208], [75, 245], [76, 250], [72, 160], [75, 192], [75, 220], [70, 170], [72, 197], [70, 155], [74, 190], [71, 200], [76, 220], [73, 210], [76, 228], [71, 190], [69, 160], [72, 184], [72, 180], [69, 180], [73, 200], [69, 176], [73, 160], [74, 222], [74, 211], [72, 195], [71, 200], [72, 175], [72, 206], [76, 240], [76, 185], [76, 260], [74, 185], [76, 221], [75, 205], [71, 200], [72, 170], [71, 201], [73, 205], [75, 185], [76, 205], [75, 245], [71, 220], [75, 210], [74, 220], [72, 185], [73, 175], [73, 170], [73, 180], [73, 200], [76, 210], [72, 175], [76, 220], [73, 206], [73, 180], [73, 210], [75, 195], [75, 200], [77, 200], [73, 164], [72, 180], [75, 220], [70, 195], [74, 205], [72, 170], [80, 240], [71, 210], [71, 195], [74, 200], [74, 205], [73, 192], [75, 190], [76, 170], [73, 240], [77, 200], [72, 205], [73, 175], [77, 250], [76, 220], [71, 224], [75, 210], [73, 195], [74, 180], [77, 245], [71, 175], [72, 180], [73, 215], [69, 175], [73, 180], [70, 195], [74, 230], [76, 230], [73, 205], [73, 215], [75, 195], [73, 180], [79, 205], [74, 180], [73, 190], [74, 180], [77, 190], [75, 190], [74, 220], [73, 210], [77, 255], [73, 190], [77, 230], [74, 200], [74, 205], [73, 210], [77, 225], [74, 215], [77, 220], [75, 205], [77, 200], [75, 220], [71, 197], [74, 225], [70, 187], [79, 245], [72, 185], [72, 185], [70, 175], [74, 200], [74, 180], [72, 188], [73, 225], [72, 200], [74, 210], [74, 245], [76, 213], [82, 231], [74, 165], [74, 228], [70, 210], [73, 250], [73, 191], [74, 190], [77, 200], [72, 215], [76, 254], [73, 232], [73, 180], [72, 215], [74, 220], [74, 180], [71, 200], [72, 170], [75, 195], [74, 210], [74, 200], [77, 220], [70, 165], [71, 180], [73, 200], [76, 200], [71, 170], [75, 224], [74, 220], [72, 180], [76, 198], [79, 240], [76, 239], [73, 185], [76, 210], [78, 220], [75, 200], [76, 195], [72, 220], [72, 230], [73, 170], [73, 220], [75, 230], [71, 165], [76, 205], [70, 192], [75, 210], [74, 205], [75, 200], [73, 210], [71, 185], [71, 195], [72, 202], [73, 205], [73, 195], [72, 180], [69, 200], [73, 185], [78, 240], [71, 185], [73, 220], [75, 205], [76, 205], [70, 180], [74, 201], [77, 190], [75, 208], [79, 240], [72, 180], [77, 230], [73, 195], [75, 215], [75, 190], [75, 195], [73, 215], [73, 215], [76, 220], [77, 220], [75, 230], [70, 195], [71, 190], [71, 195], [75, 209], [74, 204], [69, 170], [70, 185], [75, 205], [72, 175], [75, 210], [73, 190], [72, 180], [72, 180], [72, 160], [76, 235], [75, 200], [74, 210], [69, 180], [73, 190], [72, 197], [72, 203], [75, 205], [77, 170], [76, 200], [80, 250], [77, 200], [76, 220], [79, 200], [71, 190], [75, 170], [73, 190], [76, 220], [77, 215], [73, 206], [76, 215], [70, 185], [75, 235], [73, 188], [75, 230], [70, 195], [69, 168], [71, 190], [72, 160], [72, 200], [73, 200], [70, 189], [70, 180], [73, 190], [76, 200], [75, 220], [72, 187], [73, 240], [79, 190], [71, 180], [72, 185], [74, 210], [74, 220], [74, 219], [72, 190], [76, 193], [76, 175], [72, 180], [72, 215], [71, 210], [72, 200], [72, 190], [70, 185], [77, 220], [74, 170], [72, 195], [76, 205], [71, 195], [76, 210], [71, 190], [73, 190], [70, 180], [73, 220], [73, 190], [72, 186], [71, 185], [71, 190], [71, 180], [72, 190], [72, 170], [74, 210], [74, 240], [74, 220], [71, 180], [72, 210], [75, 210], [72, 195], [71, 160], [72, 180], [72, 205], [72, 200], [72, 185], [74, 245], [74, 190], [77, 210], [75, 200], [73, 200], [75, 222], [73, 215], [76, 240], [72, 170], [77, 220], [75, 156], [72, 190], [71, 202], [71, 221], [75, 200], [72, 190], [73, 210], [73, 190], [71, 200], [70, 165], [75, 190], [71, 185], [76, 230], [73, 208], [68, 209], [71, 175], [72, 180], [74, 200], [77, 205], [72, 200], [76, 250], [78, 210], [81, 230], [72, 244], [73, 202], [76, 240], [72, 200], [72, 215], [74, 177], [76, 210], [73, 170], [76, 215], [75, 217], [70, 198], [71, 200], [74, 220], [72, 170], [73, 200], [76, 230], [76, 231], [73, 183], [71, 192], [68, 167], [71, 190], [71, 180], [74, 180], [77, 215], [69, 160], [72, 205], [76, 223], [75, 175], [76, 170], [75, 190], [76, 240], [72, 175], [74, 230], [76, 223], [74, 196], [72, 167], [75, 195], [78, 190], [77, 250], [70, 190], [72, 190], [79, 190], [74, 170], [71, 160], [68, 150], [77, 225], [75, 220], [71, 209], [72, 210], [70, 176], [72, 260], [72, 195], [73, 190], [72, 184], [74, 180], [72, 195], [72, 195], [75, 219], [72, 225], [73, 212], [74, 202], [72, 185], [78, 200], [75, 209], [72, 200], [74, 195], [75, 228], [75, 210], [76, 190], [74, 212], [74, 190], [73, 218], [74, 220], [71, 190], [74, 235], [75, 210], [76, 200], [74, 188], [76, 210], [76, 235], [73, 188], [75, 215], [75, 216], [74, 220], [68, 180], [72, 185], [75, 200], [71, 210], [70, 220], [72, 185], [73, 231], [72, 210], [75, 195], [74, 200], [70, 205], [76, 200], [71, 190], [82, 250], [72, 185], [73, 180], [74, 170], [71, 180], [75, 208], [77, 235], [72, 215], [74, 244], [72, 220], [73, 185], [78, 230], [77, 190], [73, 200], [73, 180], [73, 190], [73, 196], [73, 180], [76, 230], [75, 224], [70, 160], [73, 178], [72, 205], [73, 185], [75, 210], [74, 180], [73, 190], [73, 200], [76, 257], [73, 190], [75, 220], [70, 165], [77, 205], [72, 200], [77, 208], [74, 185], [75, 215], [75, 170], [75, 235], [75, 210], [72, 170], [74, 180], [71, 170], [76, 190], [71, 150], [75, 230], [76, 203], [83, 260], [75, 246], [74, 186], [76, 210], [72, 198], [72, 210], [75, 215], [75, 180], [72, 200], [77, 245], [73, 200], [72, 192], [70, 192], [74, 200], [72, 192], [74, 205], [72, 190], [71, 186], [70, 170], [71, 197], [76, 219], [74, 200], [76, 220], [74, 207], [74, 225], [74, 207], [75, 212], [75, 225], [71, 170], [71, 190], [74, 210], [77, 230], [71, 210], [74, 200], [75, 238], [77, 234], [76, 222], [74, 200], [76, 190], [72, 170], [71, 220], [72, 223], [75, 210], [73, 215], [68, 196], [72, 175], [69, 175], [73, 189], [73, 205], [75, 210], [70, 180], [70, 180], [74, 197], [75, 220], [74, 228], [74, 190], [73, 204], [74, 165], [75, 216], [77, 220], [73, 208], [74, 210], [76, 215], [74, 195], [75, 200], [73, 215], [76, 229], [78, 240], [75, 207], [73, 205], [77, 208], [74, 185], [72, 190], [74, 170], [72, 208], [71, 225], [73, 190], [75, 225], [73, 185], [67, 180], [67, 165], [76, 240], [74, 220], [73, 212], [70, 163], [75, 215], [70, 175], [72, 205], [77, 210], [79, 205], [78, 208], [74, 215], [75, 180], [75, 200], [78, 230], [76, 211], [75, 230], [69, 190], [75, 220], [72, 180], [75, 205], [73, 190], [74, 180], [75, 205], [75, 190], [73, 195]]
# Import numpy package
import numpy as np
# Create a 2D numpy array from baseball: np_baseball
np_baseball = np.array(baseball)
# Print out the shape of np_baseball
print(np_baseball.shape)
Subsetting 2D NumPy Arrays
If your 2D numpy
array has a regular structure, i.e. each row and column has a fixed number of values, complicated ways of subsetting become very easy. Have a look at the code below where the elements "a"
and "c"
are extracted from a list of lists.
# regular list of lists
x = [["a", "b"], ["c", "d"]]
[x[0][0], x[1][0]]
# numpy
import numpy as np
np_x = np.array(x)
np_x[:,0]
Remember that in Python, the first element is at index 0!
# baseball is available as a regular list of lists
# Import numpy package
import numpy as np
# Create np_baseball (2 cols)
np_baseball = np.array(baseball)
# Print out the 50th row of np_baseball
print(np_baseball[49,:])
# Select the entire second column of np_baseball: np_weight
np_weight = np_baseball[:,1]
# Print out height of 124th player
print(np_baseball[123,0])
2D Arithmetic
You can combine matrices with single numbers, with vectors, and with other matrices.Execute the code below in the IPython shell and see if you understand:
import numpy as np
np_mat = np.array([[1, 2],
[3, 4],
[5, 6]])
np_mat * 2
np_mat + np.array([10, 10])
np_mat + np_mat
Output:
print(np_mat * 2)
[[ 2 4]
[ 6 8]
[10 12]]
print(np_mat * 2)
[[ 2 4]
[ 6 8]
[10 12]]
print(np_mat * 2)
[[ 2 4]
[ 6 8]
[10 12]]
# baseball is available as a regular list of lists
# updated is available as 2D numpy array
# Import numpy package
import numpy as np
# Create np_baseball (3 cols)
np_baseball = np.array(baseball)
# Print out addition of np_baseball and updated
print(np_baseball + updated)
# Create numpy array: conversion. You want to convert the units of height and weight. As a first step, create a numpy array with three values: 0.0254, 0.453592 and 1. Name this array conversion.
conversion = [0.0254,0.453592,1]
# Print out product of np_baseball and conversion
print(np_baseball * conversion)
Intro to Python for Data Science Learning 7 - 2D NumPy Arrays的更多相关文章
- Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics
NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...
- Intro to Python for Data Science Learning 6 - NumPy
NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...
- Intro to Python for Data Science Learning 5 - Packages
Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...
- Intro to Python for Data Science Learning 2 - List
List from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-list ...
- Intro to Python for Data Science Learning 4 - Methods
Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...
- Intro to Python for Data Science Learning 3 - functions
Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...
- Intermediate Python for Data Science learning 2 - Histograms
Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...
- Intermediate Python for Data Science learning 1 - Basic plots with matplotlib
Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...
- Intermediate Python for Data Science learning 3 - Customization
Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...
随机推荐
- 如何使用HttpClient来发送带客户端证书的请求,以及如何忽略掉对服务器端证书的校验
最近要做客户端和服务器端的双向认证,在客户端向服务器端发送带证书的请求这里有一点问题,网上的例子大多都不太好使,于是找了github上httpclient源代码中的例子改造了一下,终于弄明白了 git ...
- Unity3D笔记十九 持久化数据
1.PlayerPrefs类(生命周期???) 1.1 保存与读取数据 在C#中类似缓存.Cookie.Session等保存数据的,但是有点区别的是在C#中如果在取值时没有取到默认值则返回值是NULL ...
- 基于Spring-Boot框架的Elasticsearch搜索服务器配置
一.相关包maven配置 <!-- https://mvnrepository.com/artifact/org.springframework.data/spring-data-elastic ...
- C3P0连接池配置(C3P0Utils.java)
配置文件 c3p0-config.xml <?xml version="1.0" encoding="UTF-8"?> <c3p0-confi ...
- HDU 1686 - Oulipo - [KMP模板题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1686 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
- Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)
A. Search for Pretty Integers 题目链接:http://codeforces.com/contest/872/problem/A 题目意思:题目很简单,找到一个数,组成这个 ...
- python面向对象高级:@property
@property 把方法『变成』了属性,广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性. 最大的作用就是既能检查参数,又可以用类 ...
- XSS 防范XSS 攻击的措施
XssSniper--0KEE TEAM XssSniper--0KEE TEAM XssSniper 扩展介绍 一直以来,隐式输出的DomXSS漏洞难以被传统的扫描工具发 ...
- WIN7怎么把暴风影视库去除?
最近在win7 64位系统上安装新版暴风,打开我的电脑里面多了个暴风影视库图标,点击右键也没有删除 每次一打开“计算机”看见这个很碍眼.怎么把它关闭呢? 方法如下: 打开注册表,删除此项 HKEY_C ...
- Python开发【笔记】:pymsyql 插入一条数据同时获取新插数据的自增id的两种方式
一.通过cursor.lastrowid import pymysql.cursors # Connect to the database connection = pymysql.connect(h ...