Linear Algebra lecture9 note
Linear independence
Spanning a space
Basis and dimension
以上概念都是针对a bunch of vectors, 不是矩阵里的概念
Suppose A is m by n with m<n, then there are non-zero solutions to AX=0(more unknowns than equations)
Reason: There will be free variables
Independence:
Vectors X1, X2,…,Xn are independent if no combination gives zero vector( except the zero combination)
C1X1+C2X2+…+CnXn≠0
1.若以上向量中存在零向量,则不可能线性无关
2.平面内三个向量定成线性相关
3.如果零空间存在非零向量,那么各列线性相关
Repeat: when V1,V2,…,Vn are columns of A,
they are independent if N(A) is only zero vectors( no free variable,r=n)
they are dependent if AC=0 for some non-zero C( has free variable,r<n)
Spanning a space: Vectors V1,V2,..,Vl span a subspace means: The space consists of all combinations of those vectors
Basis: For a space is a sequence of vectors V1,V2,…,Vd with 2 properties:
1.They are independent
2.They span the spaces
Example:
space in R3
one space is

如何检验是否构成基?
可当作矩阵列向量,经过消元、变换,看是否能得到自由变量?是否列都是主列?
Rn,n vectors give basis if the n *n matrix with those columns if invertible
Given a space: Every basis for space has the same number of vectors, and this number is called dimension of space
Summary:
Independence, that looks at combinations not being zero
(线性无关,着眼于线性组合不为0)
Spanning, that looks at all the combinations
(生成,着眼于所有的线性组合)
Basis, that’s the one that combines independence and spanning
(基,一组无关的向量并生成空间)
Dimension,the number of vectors in any basis
(维数,表示基向量的个数)
Linear Algebra lecture9 note的更多相关文章
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- Linear Algebra lecture10 note
Four fundamental subspaces( for matrix A) if A is m by n matrix: Column space C(A) in Rm (列空间在m维实 ...
- Linear Algebra lecture8 note
Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique example: 若想方程有解 ...
- Linear Algebra lecture7 note
Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R rank o ...
- Linear Algebra lecture6 note
Vector spaces and subspaces Column space of A solving Ax=b Null space of A Vector space requiremen ...
- Linear Algebra Lecture5 note
Section 2.7 PA=LU and Section 3.1 Vector Spaces and Subspaces Transpose(转置) example: 特殊情况,对称 ...
- Linear Algebra lecture4 note
Inverse of AB,A^(A的转置) Product of elimination matrices A=LU (no row exchanges) Inverse of AB,A^(A ...
- Linear Algebra lecture3 note
Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A Matrix multiplication ...
- Codeforces Gym101502 B.Linear Algebra Test-STL(map)
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input ...
随机推荐
- ctags and vim
1,源码目录下第归检索. ctags -R * 2,搜索tag并用vim打开: vim -t <tag> 3,在vim 下的一些操作: Keyboard command Action Ct ...
- ppp数据帧的格式
参考http://blog.chinaunix.net/uid-11639156-id-2379044.html
- iOS 修改backBarButtonItem 中的titile 字段
需求如下:A 页面 push 到 B 页面. B 页面中有个返回按钮 不显示A 中的title,而显示 "<返回" ,当然系统的样式还是默认的系统样式.(考虑都是nav ...
- 涵涵和爸爸习惯养成进度表(三)(June 25 - )
规则说明 23天内,没有哭脸,不超过三个无表情脸,可以给一个奖励(动画书等) 涵涵违反规则,在爸爸和妈妈都同意的情况下,可以给无表情脸 爸爸违反规则,在妈妈和涵涵都同意的情况下,可以给无表情脸 获奖记 ...
- 谈谈对hibernate的理解
它是ORM思想的一个实现,对JDBC进行了很好的封装,它通过配置使JavaBean对象和数据库表之间进行映射,并提供对增.删.改.查便利的操作方法,同时支持事务处理,它对数据库记录还提供了缓存机制,提 ...
- eclipse创建maven管理Spark的scala
说明,由于spark是用scala写的.因此,不管是在看源码还是在写spark有关的代码的时候,都最好是用scala.那么作为一个程序员首先是必须要把手中的宝剑给磨砺了.那就是创建好编写scala的代 ...
- 排序系列 之 简单选择排序及其改进算法 —— Java实现
简单选择排序算法: 基本思想: 在待排序数据中,选出最小的一个数与第一个位置的数交换:然后在剩下的数中选出最小的数与第二个数交换:依次类推,直至循环到只剩下两个数进行比较为止. 实例: 0.初始状态 ...
- 面向对象to1
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- eclipse或myeclipse快捷键
MyEclipse 快捷键1(CTRL) ------------------------------------- Ctrl+1 快速修复 Ctrl+D: 删除当前行 Ctrl+Q 定位到最后编辑 ...
- TE9手机微信场景
HTML <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8& ...