Linear independence

Spanning a space

Basis and dimension

以上概念都是针对a bunch of vectors, 不是矩阵里的概念

 


Suppose A is m by n with m<n, then there are non-zero solutions to AX=0(more unknowns than equations)

Reason: There will be free variables

Independence:

Vectors X1, X2,…,Xn are independent if no combination gives zero vector( except the zero combination)

C1X1+C2X2+…+CnXn≠0

1.若以上向量中存在零向量,则不可能线性无关

2.平面内三个向量定成线性相关

3.如果零空间存在非零向量,那么各列线性相关

Repeat: when V1,V2,…,Vn are columns of A,

they are independent if N(A) is only zero vectors( no free variable,r=n)

they are dependent if AC=0 for some non-zero C( has free variable,r<n)

 


Spanning a space: Vectors V1,V2,..,Vl span a subspace means: The space consists of all combinations of those vectors

Basis: For a space is a sequence of vectors V1,V2,…,Vd with 2 properties:

1.They are independent

2.They span the spaces

Example:

space in R3

one space is

如何检验是否构成基?

可当作矩阵列向量,经过消元、变换,看是否能得到自由变量?是否列都是主列?

Rn,n vectors give basis if the n *n matrix with those columns if invertible

Given a space: Every basis for space has the same number of vectors, and this number is called dimension of space

 


Summary:

Independence, that looks at combinations not being zero

(线性无关,着眼于线性组合不为0)

Spanning, that looks at all the combinations

(生成,着眼于所有的线性组合)

Basis, that’s the one that combines independence and spanning

(基,一组无关的向量并生成空间)

Dimension,the number of vectors in any basis

(维数,表示基向量的个数)

Linear Algebra lecture9 note的更多相关文章

  1. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  2. Linear Algebra lecture10 note

    Four fundamental subspaces( for matrix A)   if A is m by n matrix: Column space  C(A) in Rm (列空间在m维实 ...

  3. Linear Algebra lecture8 note

    Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique   example: 若想方程有解 ...

  4. Linear Algebra lecture7 note

    Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R   rank o ...

  5. Linear Algebra lecture6 note

    Vector spaces and subspaces Column space of A solving Ax=b Null space of A   Vector space requiremen ...

  6. Linear Algebra Lecture5 note

    Section 2.7     PA=LU and Section 3.1   Vector Spaces and Subspaces   Transpose(转置) example: 特殊情况,对称 ...

  7. Linear Algebra lecture4 note

    Inverse of AB,A^(A的转置) Product of elimination matrices  A=LU (no row exchanges)   Inverse of AB,A^(A ...

  8. Linear Algebra lecture3 note

    Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A   Matrix multiplication ...

  9. Codeforces Gym101502 B.Linear Algebra Test-STL(map)

    B. Linear Algebra Test   time limit per test 3.0 s memory limit per test 256 MB input standard input ...

随机推荐

  1. 使用javaScript实现简单倒计时功能

    效果如下: <div class="warp"> <p id="txt">距离”十一“国庆放假还有:</p><br&g ...

  2. NGUI如何使2D图片按像素1:1显示在屏幕上

    NGUI版本为3.5.1. 将camera 设置为正交模式,size值设为1. UIRoot(2D)有3种缩放样式: 1.PixelPerfect.UI严格按照指定的像素大小显示,不会随着屏幕的分辨率 ...

  3. 微信Auth2.0授权的时候出现两次回调

    在获取用户OpenID的时候 $url="https://open.weixin.qq.com/connect/oauth2/authorize?appid=".WX_APPID. ...

  4. C#事件支持发布者/订阅者模式(观察者模式)

    C#事件支持发布者/订阅者模式,发布者将事件通知给订阅者,而订阅者在事件发生时调用已经注册好的事件处理函数.        public delegate void delUpdate();  //委 ...

  5. HTML5 LocalStorage 本地存储

    HTML5 LocalStorage 本地存储 说到本地存储,这玩意真是历尽千辛万苦才走到HTML5这一步,之前的历史大概如下图所示: 最早的Cookies自然是大家都知道,问题主要就是太小,大概也就 ...

  6. OD调试17

    程序先出现一个nag 然后出现主窗口 然后出现第二个nag窗口        我们查个壳   没有壳 那就载入OD看看,继续用调用堆栈的方法 发现一直执行用的都是这一个call,最后执行到程序结束.之 ...

  7. phonegap android 开发环境搭建

    1.下载JDK并安装   http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html 配置环境变量   ...

  8. WebMidiLink

    g200kg > WebMidiLink > 1.Introduction WebMidiLink 2012/06/26 1.Introduction « Prev 1.Introduct ...

  9. 解决表单(搜索框)回车的时候直接提交了表单不运行js的问题

    我想在搜索输入框中输入关键词后回车,先运行一段js,然后在提交表单,而默认情况下回车的时候也会出发表单的提交所有没法等js运行完成,故利用 onkeydown="if(event.keyCo ...

  10. android操作线程各种方法解析

    (一)刚开始学习android的时候我是这么写的 new Thread( new Runnable() { public void run() { myView.invalidate(); } }). ...