[SDOI2012]任务安排 BZOJ2726 斜率优化+二分查找
网上的题解...状态就没有一个和我一样的...这让我有些无从下手...
分析:
我们考虑,正常的斜率优化满足x(i)单调递增,k(i)单调递增,那么我们就可以只用维护一个单调队列满足对于当前的x(i)有最小值即可,因为x(i)满足单调递增。这样的话,我们就可以维护一个单调队列让队首元首最小。而这道题,可以发现有部分数据满足x(i)单调递增,那么直接裸上就可以,但是由于时间有负数,所以x(i)并不满足单调性。但是由于k(i)仍然满足单调性,因此,我们依然可以发现更新x(i)的时候满足斜率优化的性质,也就是我们已经可以将已经完全被覆盖的直线忽略。(即:我们依然可以维护一个大凹包)
考虑n^2的DP方程:f[i]表示当前的最后一段区间在以i为终点时的最小花费。
转移:f[i]=min{f[j]+(sum1[i]-sum1[j]+m)*(sum2[n]-sum2[j])};
之后,我们发现在我们维护的队列中,对于相同的x(i),不同的j,更新的f[i]具有单峰性,那么导函数具有单调性,二分导函数,找到最大值,之后更新答案,剩下的就是斜率优化的常规操作了。
附上代码:
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <iostream>
using namespace std;
#define N 300005
#define ll long long
#define K(x) (-sum2[x])
#define B(x) (f[x]-sum1[x]*sum+sum1[x]*sum2[x]-m*sum2[x])
#define Y(x,y) (K(y)*sum1[x]+B(y))
int n,q[N];
ll f[N],sum1[N],sum2[N],sum,m;
bool cmp(int i,int j,int k)
{
ll t1=(K(j)-K(k))*(B(i)-B(k));
ll t2=(K(i)-K(k))*(B(j)-B(k));
return t1<=t2;
}
bool check(int p1,int p2,int i)
{
return /*f[p2]-sum2[p2]*(sum1[i]+m)*/Y(i,p2)</*f[p1]-(sum1[i]+m)*sum2[p1]*/Y(i,p1);
}
int main()
{
scanf("%d%lld",&n,&m);
for(int i=1,x,y;i<=n;i++)
{
scanf("%d%d",&x,&y);
sum1[i]=sum1[i-1]+x;
sum2[i]=sum2[i-1]+y;
}
sum=sum2[n];int t=0;memset(f,0x3f,sizeof(f));f[0]=0;
for(int i=1;i<=n;i++)
{
int l=0,r=t;
while(l<r)
{
int mid=(l+r)>>1;
if(check(q[mid],q[mid+1],i))l=mid+1;
else r=mid;
}
// printf("%d\n",q[l]);
f[i]=Y(i,q[l])+sum*sum1[i]+m*sum;
while(t&&cmp(q[t-1],q[t],i))t--;
q[++t]=i;
}
printf("%lld\n",f[n]);return 0;
}
[SDOI2012]任务安排 BZOJ2726 斜率优化+二分查找的更多相关文章
- BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分
BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...
- BZOJ2726 [SDOI2012]任务安排 【斜率优化 + cdq分治】
题目 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i ...
- 2018.09.05 bzoj2726: [SDOI2012]任务安排(斜率优化dp+二分)
传送门 跟Ti" role="presentation" style="position: relative;">TiTi为正数的时候差不多. ...
- BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)
题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...
- hdu2993之斜率dp+二分查找
MAX Average Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- BZOJ2726【SDOI2012】任务安排(斜率优化Dp+二分查找)
由题目条件显然可以得到状态 f[i][j] 表示以 i 为结尾且 i 后作为断点,共做了 j 次分组的最小代价. 因此转移变得很显然:f[i][j]=min{f[k][j-1]+(s×j+sumT[i ...
- [BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)
2726: [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1580 Solved: 466[Submit][Statu ...
- 洛谷P2365/5785 任务安排 题解 斜率优化DP
任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 ...
- 2018.09.05 任务安排(斜率优化dp)
描述 这道题目说的是,给出了n项必须按照顺序完成的任务,每项任务有它需要占用机器的时间和价值.现在我们有一台机器可以使用,它每次可以完成一批任务,完成这批任务所需的时间为一个启动机器的时间S加上所有任 ...
随机推荐
- kafka-hadoop-consumer
写了一个工具,从kafka传输数据到hdfs,采用的api,可以消费指定的kafka topic 或者为了简便可以消费所有的topic中各个partition的数据. 地址:https://githu ...
- MySQL 性能监控4大指标——第一部分
[编者按]本文作者为 John Matson,主要介绍 mysql 性能监控应该关注的4大指标. 第一部分将详细介绍前两个指标: 查询吞吐量与查询执行性能.文章系国内 ITOM 管理平台 OneAPM ...
- css+div页面布局
div标签是html页面中用于分组的块元素,是专门用于元素布局的标签. 标签的级别: 1.行级标签:可设置大小,但一行只能容下一个行级标签(默认宽度==页面宽度,默认高度==填充高度) 2.块级标签: ...
- python 之__new__
注意: 继承自object的新式类才有__new__方法 类中的__init__方法依赖__new__方法的正确返回,init中的self就是__new__返回的实例 __new__至少要有一个参数c ...
- sql server 日期时间与字符串的转换
一.sql server日期时间函数Sql Server中的日期与时间函数 1. 当前系统日期.时间 select getdate() 2. dateadd 在向指定日期加上一段时间的基 ...
- SQL Server FileStream (转载)
从SQL SERVER 2008开始,SQL SERVER引入了一种新的文件组类型叫FileStream文件组,如下图所示: 那么这种文件组是用来做什么的呢? 以往我们对文件管理有两种方法: 数据库只 ...
- IE中操作粘贴板复制和粘贴
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 接口调用,输出结果为Json格式(ConvertTo-Json),提交参数给URL(WebRequest)
1.直接输出为json格式: Get-Process -Id $pid | ConvertTo-Json | clip.exe 2.自定义结果为json格式: $serverinfoj = @&quo ...
- java读取txt文件的2中方法---并将内容(每一行以固定的字符分割切成2段)存到map中去
#java读取txt文件的第一种方法 /** * 方法:readTxt * 功能:读取txt文件并把txt文件的内容---每一行作为一个字符串加入到List中去 * 参数:txt文件的地址 * 返回: ...
- Eclipse中Tomcat的配置
1.Window-Preferences-Server-Runtime Environments 2.点击Add,选择相应的Tomcat版本,我的是7.0的所以我选择这个.并勾选Create a ne ...