Cyclic Tour

                                                                               Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)
                                                                                         Total Submission(s): 2709    Accepted Submission(s): 1387

Problem Description
There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom wants the total length of
all the tours minimum, but he is too lazy to calculate. Can you help him?
 
Input
There are several test cases in the input. You should process to the end of file (EOF).
The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B,
whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
 
Output
Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1. 
 
Sample Input
6 9
1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
6 5
1 2 1
2 3 1
3 4 1
4 5 1
5 6 1
 
Sample Output
42
-1

Hint

In the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.

 
Author
RoBa@TJU
 
Source
 
Recommend
lcy

——————————————————————————————

题目的意思是是给出一张有向图,要选择几条边使得每个点都落在一个环上,使得所选的边和最小

思路:每个点落在环上,所以每个点的入度出度均为1,这正好符合二分图性质,建立二分图,求最大权匹配,题目要求最小,权值取负数即可

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long const int MAXN = 505;
const int INF = 0x3f3f3f3f;
int g[MAXN][MAXN];
int lx[MAXN],ly[MAXN]; //顶标
int linky[MAXN];
int visx[MAXN],visy[MAXN];
int slack[MAXN];
int nx,ny;
bool find(int x)
{
visx[x] = true;
for(int y = 0; y < ny; y++)
{
if(visy[y])
continue;
int t = lx[x] + ly[y] - g[x][y];
if(t==0)
{
visy[y] = true;
if(linky[y]==-1 || find(linky[y]))
{
linky[y] = x;
return true; //找到增广轨
}
}
else if(slack[y] > t)
slack[y] = t;
}
return false; //没有找到增广轨(说明顶点x没有对应的匹配,与完备匹配(相等子图的完备匹配)不符)
} int KM() //返回最优匹配的值
{
int i,j;
memset(linky,-1,sizeof(linky));
memset(ly,0,sizeof(ly));
for(i = 0; i < nx; i++)
for(j = 0,lx[i] = -INF; j < ny; j++)
lx[i] = max(lx[i],g[i][j]);
for(int x = 0; x < nx; x++)
{
for(i = 0; i < ny; i++)
slack[i] = INF;
while(true)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy));
if(find(x)) //找到增广轨,退出
break;
int d = INF;
for(i = 0; i < ny; i++) //没找到,对l做调整(这会增加相等子图的边),重新找
{
if(!visy[i] && d > slack[i])
d = slack[i];
}
for(i = 0; i < nx; i++)
{
if(visx[i])
lx[i] -= d;
}
for(i = 0; i < ny; i++)
{
if(visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
}
int result = 0;
int cnt=0;
for(i = 0; i < ny; i++)
if(linky[i]>-1)
{
result += g[linky[i]][i];
if(g[linky[i]][i]!=-1044266559)
cnt++;
}
if(cnt<nx)
result=1;
return -result;
} int main()
{
int n,m,u,v,c,T; while(~scanf("%d%d",&n,&m))
{
nx=ny=n;
memset(g,-INF,sizeof g);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&c);
u--,v--;
g[u][v]=max(g[u][v],-c);
}
printf("%d\n",KM());
}
return 0;
}

  

HDU1853 Cyclic Tour的更多相关文章

  1. hdu1853 Cyclic Tour (二分图匹配KM)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  2. HDU1853 Cyclic Tour(最小费用最大流)

    题目大概说给一张有向图,每条边都有权值,要选若干条边使其形成若干个环且图上各个点都属于且只属于其中一个环,问选的边的最少权值和是多少. 各点出度=入度=1的图是若干个环,考虑用最小费用最大流: 每个点 ...

  3. HDU-1853 Cyclic Tour

    最小权值环覆盖问题:用几个环把所有点覆盖,求所选取的边最小的权值之和. 拆点思想+求最小转求最大+KM算法 #include <cstdlib> #include <cstdio&g ...

  4. hdu1853 Cyclic Tour 完美匹配 验证模版

    题意: 给出n个城市和m条路,每个城市只能经过一次,想要旅游所有的城市,求需要的最小花费(路径的长度). 分析: 做题之前,首先要知道什么是完美匹配.不然题目做了却不知道为什么可以用这个方法来做.完美 ...

  5. Cyclic Tour HDUOJ 费用流

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  6. hdu 1853 Cyclic Tour 最大权值匹配 全部点连成环的最小边权和

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) ...

  7. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  8. HDU 1853 Cyclic Tour[有向环最小权值覆盖]

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  9. 最大流增广路(KM算法) HDOJ 1853 Cyclic Tour

    题目传送门 /* KM: 相比HDOJ_1533,多了重边的处理,还有完美匹配的判定方法 */ #include <cstdio> #include <cmath> #incl ...

随机推荐

  1. 三种简单排序算法(java实现)

    一.冒泡排序 算法思想:遍历待排序的数组,每次遍历比较相邻的两个元素,如果他们的排列顺序错误就交换他们的位置,经过一趟排序后,最大的元素会浮置数组的末端.重复操                   作 ...

  2. tomcat加载web项目报错:bad major version at offset=6

    分析原因是开发的web项目的java版本高于tomcat使用的java版本,比如我是在java1.6上开发的,但是tomcat使用的java运行环境是1.5,所以会报改错误. 转载博客如下:http: ...

  3. Wordvec_句子相似度

    import jiebafrom jieba import analyseimport numpyimport gensimimport codecsimport pandas as pdimport ...

  4. 用visual studio 2017来调试python

    https://www.visualstudio.com/zh-hans/thank-you-downloading-visual-studio/?sku=Professional&rel=1 ...

  5. jQuery实现多个ajax请求等待

    通常,jQuery的函数ajax进行Ajax调用.函数ajax只能做一个Ajax调用.当Ajax调用成功时,执行回调函数.可选地,当Ajax调用返回错误时,调用另一个回调函数.但是,该功能不能根据这些 ...

  6. TabControl中显示和隐藏TabPage页

    在使用TabControl控件时,希望隐藏其中某个选项卡(即TabPage).TabPage类明明提供了一个Hide方法,用在代码中却没有任何效果,甚是奇怪.无奈之余,只好考虑另辟途径 方法一: 设置 ...

  7. Django的开始

    一 浏览器相关知识 http:只有依赖一回,属于短链接,不会报错客户端的信息. 浏览器相当于一个客户端,客户端的链接 服务端:socket服务端,起服务监听客户端的请求. import socket ...

  8. Cisco interview

    A.  1. Self-introduction I am Yanlin He . I am a master degree candidate of school of infomation sci ...

  9. 2019.01.23 hdu3377 Plan(轮廓线dp)

    传送门 题意简述:给一个n*m的带权矩阵,求从左上角走到右下角的最大分数,每个格子只能经过最多一次,n,m≤9n,m\le9n,m≤9. 思路: 考虑轮廓线dpdpdp,但这道题并没有出现回路的限制因 ...

  10. 2019.01.04 bzoj2962: 序列操作(线段树+组合数学)

    传送门 线段树基础题. 题意:要求维护区间区间中选择ccc个数相乘的所有方案的和(c≤20c\le20c≤20),支持区间加,区间取负. 由于c≤20c\le20c≤20,因此可以对于每个线段树节点可 ...