传送门

题意简述:给一个n∗mn*mn∗m的网格图,有的格子不能走,有的格子只能竖着走,有的格子只能横着走,问用一条回路覆盖所有能走的格子的方案数。


思路:

就是简单的轮廓线dpdpdp加了一点限制而已,考虑几个特判。

  1. 只能横着走的,限制它必须有左插头,必须没有上插头
  2. 只能竖着走的,限制它必须有右插头,必须没有左插头

然后就差不多了。

然后博主这个废柴因为hash表写错了一个地方调了1h

代码:

#include<bits/stdc++.h>
#define ri register int
#define change f[cur].insert(stat,sum)
using namespace std;
int n,m,mp[15][15],zx=-1,zy=-1;
char s[15];
bool cur=0;
typedef long long ll;
const int mod=1e6+7;
ll ans=0;
struct Statement{
	ll sum[mod];
	int sta[mod],idx[mod],tot;
	inline void clear(){memset(idx,-1,sizeof(idx)),tot=0;}
	inline void insert(int stat,ll sums){
		int pos=stat%mod;
		if(!pos)++pos;
		while(~idx[pos]&&sta[idx[pos]]!=stat)pos=pos==mod-1?1:pos+1;
		if(~idx[pos])sum[idx[pos]]+=sums;
		else sum[idx[pos]=++tot]=sums,sta[tot]=stat;
	}
}f[2];
inline int getbit(int x,int p){return (x>>((p-1)<<1))&3;}
inline void update(int&x,int p,int v){x^=(getbit(x,p)^v)<<((p-1)<<1);}
inline int findr(int stat,int p){
	for(ri i=p+1,cnt=1,bit;i<=m+1;++i){
		bit=getbit(stat,i);
		if(bit==1)++cnt;
		if(bit==2)--cnt;
		if(!cnt)return i;
	}
}
inline int findl(int stat,int p){
	for(ri i=p-1,cnt=-1,bit;i;--i){
		bit=getbit(stat,i);
		if(bit==1)++cnt;
		if(bit==2)--cnt;
		if(!cnt)return i;
	}
}
inline void solve(){
	f[cur=0].clear(),f[cur].insert(0,1);
	for(ri i=1;i<=n;++i){
		for(ri j=1;j<=m;++j){
			f[cur^=1].clear();
			ll sum;
			for(ri stat,p,q,tt=1;tt<=f[cur^1].tot;++tt){
				stat=f[cur^1].sta[tt],sum=f[cur^1].sum[tt];
				p=getbit(stat,j),q=getbit(stat,j+1);
				if(!mp[i][j]){if(!(p+q))change;continue;}
				if(mp[i][j]==1){
					if(!(p+q)){if(mp[i][j+1]%2&&mp[i+1][j]%3)update(stat,j,1),update(stat,j+1,2),change;continue;}
					if(!p){
						if(mp[i][j+1]%2)change;
						if(mp[i+1][j]%3)update(stat,j,q),update(stat,j+1,0),change;
						continue;
					}
					if(!q){
						if(mp[i+1][j]%3)change;
						if(mp[i][j+1]%2)update(stat,j,0),update(stat,j+1,p),change;
						continue;
					}
					if(p==1&&q==2){if(i==zx&&j==zy)ans+=sum;continue;}
					update(stat,j,0),update(stat,j+1,0);
					if(p==2&&q==1){change;continue;}
					if(p==1&&q==1){update(stat,j+1,0),update(stat,findr(stat,j+1),1),change;continue;}
					if(p==2&&q==2){update(stat,j,0),update(stat,findl(stat,j),2),change;continue;}
					continue;
				}
				if(mp[i][j]==2){
					if(q&&!p&&mp[i+1][j]%3)update(stat,j+1,0),update(stat,j,q),change;
					continue;
				}
				if(mp[i][j]==3){
					if(p&&!q&&mp[i][j+1]%2)update(stat,j,0),update(stat,j+1,p),change;
					continue;
				}
			}
		}
		for(ri j=1;j<=f[cur].tot;++j)f[cur].sta[j]<<=2;
	}
}
int main(){
	scanf("%d%d",&n,&m);
	for(ri i=1;i<=n;++i){
		scanf("%s",s+1);
		for(ri j=1;j<=m;++j){
			if(s[j]=='#')continue;
			zx=i,zy=j;
			if(s[j]=='.')mp[i][j]=1;
			if(s[j]=='|')mp[i][j]=2;
			if(s[j]=='-')mp[i][j]=3;
		}
	}
	solve();
	cout<<ans;
	return 0;
}

2019.01.24 bzoj3125: CITY(轮廓线dp)的更多相关文章

  1. 2019.01.24 NOIP训练 旅行(轮廓线dp)

    传送门 题意简述: 给一个n∗mn*mn∗m的有障碍的网格图,问你从左上角走到左下角并覆盖所有可行格子的路径条数. 思路: 路径不是很好算. 将图改造一下,在最前面添两列,第一列全部能通过,第二列只有 ...

  2. 2019.01.24 bzoj2310: ParkII(轮廓线dp)

    传送门 题意简述:给一个m*n的矩阵,每个格子有权值V(i,j) (可能为负数),要求找一条路径,使得每个点最多经过一次且点权值之和最大. 思路:我们将求回路时的状态定义改进一下. 现在由于求的是路径 ...

  3. 梦想MxWeb3D协同设计平台 2019.01.24更新

    SDK开发包下载地址:http://www.mxdraw.com/ndetail_10124.html1.  编写快速入门教程2.  重构前端代码,支持一个页面多个三维控件同时加载,或二维和三维同时加 ...

  4. 【NOI2019模拟2019.7.1】三格骨牌(轮廓线dp转杨图上钩子定理)

    Description \(n,m<=1e4,mod ~1e9+7\) 题解: 显然右边那个图形只有旋转90°和270°后才能放置. 先考虑一个暴力的轮廓线dp: 假设已经放了编号前i的骨牌,那 ...

  5. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  6. HDU 4802 && HDU 4803 贪心,高精 && HDU 4804 轮廓线dp && HDU 4805 计算几何 && HDU 4811 (13南京区域赛现场赛 题目重演A,B,C,D,J)

    A.GPA(HDU4802): 给你一些字符串对应的权重,求加权平均,如果是N,P不计入统计 GPA Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  7. HDU - 4804 Campus Design(状压+轮廓线dp)

    Campus Design Nanjing University of Science and Technology is celebrating its 60th anniversary. In o ...

  8. POJ 3254 Corn Fields (状压DP,轮廓线DP)

    题意: 有一个n*m的矩阵(0<n,m<=12),有部分的格子可种草,有部分不可种,问有多少种不同的种草方案(完全不种也可以算1种,对答案取模后输出)? 思路: 明显的状压DP啦,只是怎样 ...

  9. 轮廓线DP POJ3254 && BZOJ 1087

    补了一发轮廓线DP,发现完全没有必要从右往左设置状态,自然一点: 5 6 7 8 9 1 2 3 4 如此设置轮廓线标号,转移的时候直接把当前j位改成0或者1就行了.注意多记录些信息对简化代码是很有帮 ...

随机推荐

  1. JS判断变量类型

    typeof v 只能用于识别基础类型,不能识别对象 v instanceof MyClass 判断类型 Object.prototype.toString.call(v.p) === "[ ...

  2. [leetcode]428. Serialize and Deserialize N-ary Tree序列化与反序列化N叉树

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  3. golang xml和json的解析与生成

    golang中解析xml时我们通常会创建与之对应的结构体,一层层嵌套,完成复杂的xml解析. package main; import ( "encoding/xml" " ...

  4. vue2.0插件

    1.better-scroll 参考网址:https://ustbhuangyi.github.io/better-scroll/doc/zh-hans/ better-scroll 是什么 firs ...

  5. 使用java5的注解和Sping/AspectJ的AOP 来实现Memcached的缓存

    使用java5的注解和Sping/AspectJ的AOP 来实现Memcached的缓存 今天要介绍的是Simple-Spring-Memcached,它封装了对MemCached的调用,使MemCa ...

  6. PAT 1036 跟奥巴马一起编程(15)(代码)

    1036 跟奥巴马一起编程(15)(15 分) 美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014年底,为庆祝"计算机科学教育周& ...

  7. Java.Annotations

    Annotation 0. Annotation Tricks http://developer.android.com/reference/java/lang/annotation/Annotati ...

  8. BZOJ1228或洛谷2148 [SDOI2009]E&D

    BZOJ原题链接 洛谷原题链接 完全不会呀.. 写了这题才知道\(SG\)函数原来也能打表找规律... 题解请看大佬的博客 #include<cstdio> using namespace ...

  9. a[i++]

    今天才知道,a[i++]到底是什么意思:: 其实也很简单了,就是a[i]的值还是a[i],然后i自增1: 把这篇博客当作平常各种错题博客吧,把各种从网上抄的代码不懂的地方写到这个地方算了 ====== ...

  10. P1083龙舟比赛

    题目如下: 现在正在举行龙舟比赛,我们现在获得了最后冲刺时的俯视图像,现在你要输出各条龙舟的名次. 这张图像由r行c列的字符组成,每行的最左边的字符表示起点,所以字符为'S',最右边的字符为'F'.并 ...