Balls Rearrangement

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 945    Accepted Submission(s): 380


Problem Description
Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the boxes from 0 to A-1. To find the balls easily, he puts the ball numbered x into the box numbered a if x = a mod A.

Some day Bob buys B new boxes, and he wants to rearrange the balls from the old boxes to the new boxes. The new boxes are numbered from 0 to B-1. After the rearrangement, the ball numbered x should be in the box number b if x = b mod B.

This work may be very boring, so he wants to know the cost before the rearrangement. If he moves a ball from the old box numbered a to the new box numbered b, the cost he considered would be |a-b|. The total cost is the sum of the cost to move every ball, and
it is what Bob is interested in now.
 

Input
The first line of the input is an integer T, the number of test cases.(0<T<=50)

Then T test case followed. The only line of each test case are three integers N, A and B.(1<=N<=1000000000, 1<=A,B<=100000).
 

Output
For each test case, output the total cost.
 

Sample Input

3
1000000000 1 1
8 2 4
11 5 3
 

Sample Output

0
8

16

题意:有n个球,编号为0~n-1,有a个盒子,编号为0~a-1,每一个球放在第x%a(0<=x<=n-1)个盒子里,现在有b个盒子,每一个球要重新放到x%b个盒子内,如果编号相同则不用移动,如果编号不同,那么每一次移动的价值为abs(x%a-x%b),问总价值是多少。

思路:首先容易发现,循环节最大为lcm(a,b),即答案是n/p*jisuan(a,b,p)+jisuan(a,b,n%p),但是我们会发现,如果a,b是接近100000的两个素数,那么我们光是从0~lcm(a,b)做一遍会超时,所以要用别的方法。模拟几个样例后会发现,从x%a=0或者x%b=0到下一个x%a=0或者x%b=0这一段区间内,所有数从a盒子搬到b盒子产生的价值是一样的,所以我们可以"跳着"暴力,然后就不会超时了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
#define lson th<<1
#define rson th<<1|1
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0) int gcd(int a,int b){
return b ? gcd(b,a%b) : a;
} ll lcm(int a,int b){
return (ll)a*(ll)b/gcd(a,b);
}
ll jisuan(ll a,ll b,ll p)
{ ll t,x=0,y=0,c=0;
ll ans=0;
while(c<p)
{
t=min(a-x,b-y);
if(c+t>=p){
t=p-c;
}
ans+=(ll)t*abs(x-y);
c+=t;
x=(x+t)%a;
y=(y+t)%b;
}
return ans;
} int main()
{
int m,i,j,T;
ll n,a,b;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld",&n,&a,&b);
ll p=lcm(a,b);
printf("%lld\n",(ll)n/p*(ll)jisuan(a,b,p)+jisuan(a,b,n%p) );
}
return 0;
}

hdu4710 Balls Rearrangement(数学公式+取模)的更多相关文章

  1. [hdu4710 Balls Rearrangement]分段统计

    题意:求∑|i%a-i%b|,0≤i<n 思路:复杂度分析比较重要,不细想还真不知道这样一段段跳还真的挺快的=.= 令p=lcm(a,b),那么p就是|i%a-i%b|的循环节.考虑计算n的答案 ...

  2. Gym100947E || codeforces 559c 组合数取模

    E - Qwerty78 Trip Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

  3. C语言fmod()函数:对浮点数取模(求余)

    头文件:#include <math.h> fmod() 用来对浮点数进行取模(求余),其原型为:    double fmod (double x); 设返回值为 ret,那么 x = ...

  4. 除法取模练习(51nod 1119 & 1013 )

    题目:1119 机器人走方格 V2 思路:求C(m+n-2,n-1) % 10^9 +7       (2<=m,n<= 1000000) 在求组合数时,一般都通过双重for循环c[i][ ...

  5. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  6. 【HDU 5832】A water problem(大数取模)

    1千万长度的数对73和137取模.(两个数有点像,不要写错了) 效率要高的话,每15位取一次模,因为取模后可能有3位,因此用ll就最多15位取一次. 一位一位取模也可以,但是比较慢,取模运算是个耗时的 ...

  7. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  8. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  9. hdu2302(枚举,大数取模)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2303 题意:给出两个数k, l(4<= k <= 1e100, 2<=l<=1 ...

随机推荐

  1. ORACLE的还原表空间UNDO写满磁盘空间,解决该问题的具体步骤

    产生问题的原因主要以下两点:1. 有较大的事务量让Oracle Undo自动扩展,产生过度占用磁盘空间的情况:2. 有较大事务没有收缩或者没有提交所导制:说明:本问题在ORACLE系统管理中属于比较正 ...

  2. 如何写一个自己的组件库,打成NPM包,并上传到NPM远程

    1.首先使用vue create my_project 构建一个自己的Vue项目 2.vue.config.js和package.json配置如下,做了些修改 const path = require ...

  3. LeetCode662 二叉树最大宽度

    给定一个二叉树,编写一个函数来获取这个树的最大宽度.树的宽度是所有层中的最大宽度.这个二叉树与满二叉树(full binary tree)结构相同,但一些节点为空. 每一层的宽度被定义为两个端点(该层 ...

  4. Python机器学习笔记:奇异值分解(SVD)算法

    完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 奇异值分解(Singu ...

  5. cursor pin s和cursor pin s wait on x

    1.cursor pin s是一个共享锁,一般情况下是因为发生在SQL短时间内大量执行 案例:在生产库中,突然出现大量的cursor pin s的等待,询问是否有动作后,同事说有编译存储过程(被误导了 ...

  6. 史上最全postgreSQL体系结构(转)

    原文链接:https://cloud.tencent.com/developer/article/1469101 墨墨导读:本文主要从日志文件.参数文件.控制文件.数据文件.redo日志(WAL).后 ...

  7. new String("ab")到底创建了几个对象说明

    new String("ab")到底创建了几个对象? 之前一直被这个问题困扰,网上一些描述的都不是很清楚,自己看了一些资料可算搞清楚了,那就在博客上记录一下吧! String st ...

  8. 两节锂电池保护IC,芯片电路图如何设计

    两节锂电池出了充电电路外,必须搭配的也就是两节锂电池的保护板电路和芯片了.对两节节串联可再充电锂离子/锂聚合物电池的过充电.过放电和过电流进行保护.和电池反接保护功能,这些都是极其重要的. 首先设计两 ...

  9. JavaScript小记

    JavaScript小记 1. 简介 1. 语言描述 JavaScript 是一门跨平台.面向对象的弱类型动态脚本编程语言 JavaScript 是一门基于原型.函数先行的语言 JavaScript ...

  10. 第2章_神经网络入门_2-5&2-6 数据处理与模型图构建

    目录 神经元的TF实现 安装 神经网络的TF实现 神经元的TF实现 安装 版本: Python 2.7 tf 1.8.0 Linux 略 demo 神经网络的TF实现 # py36 tf 2.1. # ...