视频来源:https://www.bilibili.com/video/av51932171?t=628

博文来源:https://ww2.mathworks.cn/help/matlab/ref/fft.html?searchHighlight=fft&s_tid=doc_srchtitle

视频来源很好的解释了:

1 .傅里叶变换过程,经过傅里叶变化得到了,频率w,振幅a0,相位角φ;

2. 傅里叶变换 主要应用领域: 声音, 图像处理;

博文则很好的解释了:

1.  傅里叶变换在matlab软件中怎样应用

2.. 傅里叶变换的作用效果的展示,从时域到频域的变化,时域难以解决的问题到频域中却很清晰。

 

说明

示例

Y = fft(X) 用快速傅里叶变换 (FFT) 算法计算 X离散傅里叶变换 (DFT)。

  • 如果 X 是向量,则 fft(X) 返回该向量的傅里叶变换。

  • 如果 X 是矩阵,则 fft(X)X 的各列视为向量,并返回每列的傅里叶变换。

  • 如果 X 是一个多维数组,则 fft(X) 将沿大小不等于 1 的第一个数组维度的值视为向量,并返回每个向量的傅里叶变换。

示例

Y = fft(X,n) 返回 n 点 DFT。如果未指定任何值,则 Y 的大小与 X 相同。

  • 如果 X 是向量且 X 的长度小于 n,则为 X 补上尾零以达到长度 n

  • 如果 X 是向量且 X 的长度大于 n,则对 X 进行截断以达到长度 n

  • 如果 X 是矩阵,则每列的处理与在向量情况下相同。

  • 如果 X 为多维数组,则大小不等于 1 的第一个数组维度的处理与在向量情况下相同。

示例

Y = fft(X,n,dim) 返回沿维度 dim 的傅里叶变换。例如,如果 X 是矩阵,则 fft(X,n,2) 返回每行的 n 点傅里叶变换。

 

示例

全部折叠

噪声信号

使用傅里叶变换求噪声中隐藏的信号的频率分量。

指定信号的参数,采样频率为 1 kHz,信号持续时间为 1.5 秒。

Fs = 1000;            % Sampling frequency
T = 1/Fs; % Sampling period
L = 1500; % Length of signal
t = (0:L-1)*T; % Time vector

构造一个信号,其中包含幅值为 0.7 的 50 Hz 正弦量和幅值为 1 的 120 Hz 正弦量。

S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

用均值为零、方差为 4 的白噪声扰乱该信号。

X = S + 2*randn(size(t));

在时域中绘制噪声信号。通过查看信号 X(t) 很难确定频率分量。

plot(1000*t(1:50),X(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')

计算信号的傅里叶变换。

Y = fft(X);

计算双侧频谱 P2。然后基于 P2 和偶数信号长度 L 计算单侧频谱 P1

P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

定义频域 f 并绘制单侧幅值频谱 P1。与预期相符,由于增加了噪声,幅值并不精确等于 0.7 和 1。一般情况下,较长的信号会产生更好的频率近似值。

f = Fs*(0:(L/2))/L;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

现在,采用原始的、未破坏信号的傅里叶变换并检索精确幅值 0.7 和 1.0。

Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1); plot(f,P1)
title('Single-Sided Amplitude Spectrum of S(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

 
 

高斯脉冲

将高斯脉冲从时域转换为频域。

定义信号参数和高斯脉冲 X

Fs = 100;           % Sampling frequency
t = -0.5:1/Fs:0.5; % Time vector
L = length(t); % Signal length X = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));

在时域中绘制脉冲。

plot(t,X)
title('Gaussian Pulse in Time Domain')
xlabel('Time (t)')
ylabel('X(t)')

要使用 fft 将信号转换为频域,首先从原始信号长度确定是下一个 2 次幂的新输入长度。这将用尾随零填充信号 X 以改善 fft 的性能。

n = 2^nextpow2(L);

将高斯脉冲转换为频域。

Y = fft(X,n);

定义频域并绘制唯一频率。

f = Fs*(0:(n/2))/n;
P = abs(Y/n); plot(f,P(1:n/2+1))
title('Gaussian Pulse in Frequency Domain')
xlabel('Frequency (f)')
ylabel('|P(f)|')

 
 

余弦波

比较时域和频域中的余弦波。

指定信号的参数,采样频率为 1kHz,信号持续时间为 1 秒。

Fs = 1000;                    % Sampling frequency
T = 1/Fs; % Sampling period
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector

创建一个矩阵,其中每一行代表一个频率经过缩放的余弦波。结果 X 为 3×1000 矩阵。第一行的波频为 50,第二行的波频为 150,第三行的波频为 300。

x1 = cos(2*pi*50*t);          % First row wave
x2 = cos(2*pi*150*t); % Second row wave
x3 = cos(2*pi*300*t); % Third row wave X = [x1; x2; x3];

在单个图窗中按顺序绘制 X 的每行的前 100 个项,并比较其频率。

for i = 1:3
subplot(3,1,i)
plot(t(1:100),X(i,1:100))
title(['Row ',num2str(i),' in the Time Domain'])
end

出于算法性能的考虑,fft 允许您用尾随零填充输入。在这种情况下,用零填充 X 的每一行,以使每行的长度为比当前长度大的下一个最小的 2 的次幂值。使用 nextpow2 函数定义新长度。

n = 2^nextpow2(L);

指定 dim 参数沿 X 的行(即对每个信号)使用 fft

dim = 2;

计算信号的傅里叶变换。

Y = fft(X,n,dim);

计算每个信号的双侧频谱和单侧频谱。

P2 = abs(Y/L);
P1 = P2(:,1:n/2+1);
P1(:,2:end-1) = 2*P1(:,2:end-1);

在频域内,为单个图窗中的每一行绘制单侧幅值频谱。

for i=1:3
subplot(3,1,i)
plot(0:(Fs/n):(Fs/2-Fs/n),P1(i,1:n/2))
title(['Row ',num2str(i),' in the Frequency Domain'])
end

 
 

输入参数

全部折叠

X - 输入数组 向量 | 矩阵 | 多维数组

输入数组,指定为向量、矩阵或多维数组。

如果 X 为 0×0 空矩阵,则 fft(X) 返回一个 0×0 空矩阵。

数据类型: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical 复数支持:

n - 变换长度 [] (默认) | 非负整数标量

变换长度,指定为 [] 或非负整数标量。为变换长度指定正整数标量可以提高 fft 的性能。通常,长度指定为 2 的幂或可分解为小质数的乘积的值。如果 n 小于信号的长度,则 fft 忽略第 n 个条目之后的剩余信号值,并返回截断的结果。如果 n0,则 fft 返回空矩阵。

示例: n = 2^nextpow2(size(X,1))

数据类型: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

dim - 沿其运算的维度 正整数标量

沿其运算的维度,指定为正整数标量。如果未指定值,则默认值是大小不等于 1 的第一个数组维度。

  • fft(X,[],1) 沿 X 的各列进行运算,并返回每列的傅里叶变换。

  • fft(X,[],2) 沿 X 的各行进行运算,并返回每行的傅里叶变换。

如果 dim 大于 ndims(X),则 fft(X,[],dim) 返回 X。当指定 n 时,fft(X,n,dim) 将对 X 进行填充或截断,以使维度 dim 的长度为 n

数据类型: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

输出参数

全部折叠

Y - 频域表示 向量 | 矩阵 | 多维数组

频域表示,以向量、矩阵或多维数组形式返回。

如果 X 的类型为 single,则 fft 本身以单精度进行计算,Y 的类型也是 single。否则,Ydouble 类型返回。

Y 的大小如下:

  • 对于 Y = fft(X)Y = fft(X,[],dim)Y 的大小等于 X 的大小。

  • 对于 Y = fft(X,n,dim)size(Y,dim) 的值等于 n,而所有其他维度的大小保持与在 X 中相同。

如果 X 为实数,则 Y 是共轭对称的,且 Y 中特征点的数量为 ceil((n+1)/2)

数据类型: double | single

详细信息

全部折叠

向量的离散傅里叶变换

Y = fft(X)X = ifft(Y) 分别实现傅里叶变换和逆傅里叶变换。对于长度 nXY,这些变换定义如下:

Y(k)=nj=1X(j) W(j−1)​(k−1)nX(j)=1nnk=1Y(k) Wn−(j−1)​(k−1),

其中

Wn=e(−2πi)/n

为 n 次单位根之一。

提示

  • fft 的执行时间取决于变换的长度。仅具有小质因数的变换长度的 fft 执行时间明显快于本身是质数或具有较大质因数的变换长度的 fft 执行时间。

  • 对于大多数 n 值,实数输入的 DFT 需要的计算时间大致是复数输入的 DFT 计算时间的一半。但是,当 n 有较大的质因数时,速度很少有差别或没有差别。

  • 使用工具函数 fftw 可能会提高 fft 的速度。此函数控制用于计算特殊大小和维度的 FFT 算法优化。

算法

FFT 函数(fftfft2fftnifftifft2ifftn)基于一个称为 FFTW [1] [2] 的库。

参考

[1] FFTW (http://www.fftw.org)

[2] Frigo, M., and S. G. Johnson. “FFTW: An Adaptive Software Architecture for  the FFT.” Proceedings of the International Conference on Acoustics, Speech,  and Signal Processing. Vol. 3, 1998, pp. 1381-1384.

扩展功能

C/C++ 代码生成 使用 MATLAB Coder 生成 C 代码和 C++ 代码。

用法说明和限制:

  • 有关可变大小数据的限制,请参阅Variable-Sizing Restrictions for Code Generation of Toolbox Functions (MATLAB Coder)。

  • 对于 MEX 输出,MATLAB Coder 使用 MATLAB 用于 FFT 算法的库。对于独立的 C/C++ 代码,默认情况下,代码生成器生成用于 FFT 算法的代码,而不是生成 FFT 库调用。要生成对安装的特定 FFTW 库的调用,请提供 FFT 库回调类。有关 FFT 库回调类的详细信息,请参阅 coder.fftw.StandaloneFFTW3Interface

  • 对于 MATLAB Function 模块的仿真,仿真软件使用 MATLAB 用于 FFT 算法的库。对于 C/C++ 代码生成,默认情况下,代码生成器生成用于 FFT 算法的代码,而不是生成 FFT 库调用。要生成对安装的特定 FFTW 库的调用,请提供 FFT 库回调类。有关 FFT 库回调类的详细信息,请参阅 coder.fftw.StandaloneFFTW3Interface

GPU 数组 通过使用 Parallel Computing Toolbox 在图形处理单元 (GPU) 上运行来加快代码执行。

用法说明和限制:

  • 即使所有虚部都为零,输出 Y 也始终为复数。

有关详细信息,请参阅Run MATLAB Functions on a GPU (Parallel Computing Toolbox)。

分布式数组 使用 Parallel Computing Toolbox 在群集的组合内存中对大型数组进行分区。

用法说明和限制:

  • 对于分布式数组,fft 不使用并行 FFT 算法,而是在单个工作进程上收集向量以执行质数长度 FFT。对于质数长度较大的向量 FFT,可能导致内存不足错误。

有关详细信息,请参阅Run MATLAB Functions with Distributed Arrays (Parallel Computing Toolbox)。

另请参阅

fft2 | fftn | fftshift | fftw | ifft

在 R2006a 之前推出

matlab中fft快速傅里叶变换的更多相关文章

  1. [C++] 频谱图中 FFT快速傅里叶变换C++实现

    在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...

  2. OI中的快速傅里叶变换(FFT)

    快速傅里叶变换(FFT)                                                                               ---- LLpp ...

  3. MATLAB中FFT的使用方法

    MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...

  4. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  5. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  6. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  7. MATLAB中fft函数的正确使用方法

    问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...

  8. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

  9. [转载]Matlab中fft与fftshift命令的小结与分析

    http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术 ...

随机推荐

  1. type类型为number的input标签可以输入字母e

    主要原因是:e在数学上代表的是无理数,是一个无限不循环的小数,其值约为2.7182818284,所以在输入e的时候,输入框会把e当成一个数字看待. 可以采用下面的方式来避免这个BUG,在input标签 ...

  2. php利用快递100接口获取物流信息

    PHP使用CURL调用快递100接口查询运单信息 类代码如下: <?php/** * 快递100接口调用类 * @author 齐云海 * date: 2019/05/29 */ class E ...

  3. Unity2018.4.7导出Xcode工程报错解决方案

    1. unity导出xcode工程有两种模式,一种为模拟器运行的工程,一种为真机运行的工程,这里遇到的错误,都是导出模拟器运行工程时报的错误. 错误1: unity UnityMetalSupport ...

  4. HTML5 Drag & Drop

    一定要区分不同事件产生的对象 源元素 属性:draggable = "true" 事件: ondragstart:开始拖拽 ondragend:拖拽结束 目标元素 事件: ondr ...

  5. Mac Item2自动远程连接服务器

    Mac Item2自动远程连接服务器 1.编写脚本 vi test #!/usr/bin/expect set PORT 端口 set HOST ip set USER root set PASSWO ...

  6. Kubernetes v1.12/v1.13 二进制部署集群(HTTPS+RBAC)

    官方提供的几种Kubernetes部署方式 minikube Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,尝试Kubernetes或日常开发的用户使用.不能用于生产环 ...

  7. jackson读取json tree讲解

    待读取的json文本: {"data":{"count":4031,"list":[{"symbol":"SH ...

  8. dict字典,以及字典的一些基本应用

    dict表示方法: dict={}或d=dict() 1.字典的增:d['元素名']='元素值'.或d.setdefault('key','value') 2.字典的删:d.pop(key).或del ...

  9. [剑指Offer]56-数组中数字出现的次数(位运算)

    题目一 数组中只出现一次的数字 题目 一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字 题解 异或. 先考虑:数组中只有一个数字只出现了一次,其他数字都出现了 ...

  10. JVM强引用、软引用、弱引用、虚引用、终结器引用垃圾回收行为总结

    JVM引用 我们希望能描述这样一类对象: 当内存空间还足够时,则能保留在内存中:如果内存空间在进行垃圾收集后还是很紧张,则可以抛弃这些对象. -[既偏门又非常高频的面试题]强引用.软引用.弱引用.虚引 ...