【CF115E】Linear Kingdom Races 题解(线段树优化DP)
前言:前辈讲课时设的状态还是有些繁琐,感觉题解设的状态更简洁。
--------------
题目大意:给定$n$条道路和$m$场比赛,每个道路修建需要$c_i$,每场比赛需要使用$[l_i,r_i]$内的道路,收益为$p_i$。问最大收益。$n,m\leq 200000$
先将所有的区间右端点从小到大排序。
设$f[i][j]$表示已经考虑前$i$条道路,最右边没有修的道路是$j$。现在考虑转移。
如果不修第$i$条道路,那么最右边的没有修的道路就变成$i$了。有这样的方程$f[i][i]=max(f[i][i],f[i-1][j]) (0\leq j\leq i-1)$
如果修第$i$条道路,那么以$i$为右端点的比赛都能获得收益。有$f[i][j]=f[i-1][j]+p(0\leq j\leq l_i-1)$。但是不要忘记修路的费用,即$f[i][j]=f[i-1][j]-cost[i](0\leq j\leq i-1)$。
这样的转移是$O(n^2)$的,还不够优秀。注意到只需要维护区间最大值和序列和,我们可以用线段树来维护,只用维护懒标记,区间加和区间最大值这三个操作即可。
至于以右端点进行关键字排序,可以开一个$vector$数组来存左端点和值。
时间复杂度$O(n\log n)$。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m;
struct Node
{
int first,second;
};
vector<Node> a[];
struct node
{
int lazy,a,max;
}tree[];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void pushdown(int index)
{
tree[index*].lazy+=tree[index].lazy;
tree[index*+].lazy+=tree[index].lazy;
tree[index*].max+=tree[index].lazy;
tree[index*+].max+=tree[index].lazy;
tree[index].lazy=;
}
inline void update(int index,int l,int r,int ql,int qr,int x)
{
if (ql<=l&&r<=qr) {tree[index].lazy+=x;tree[index].max+=x;return;}
if (tree[index].lazy) pushdown(index);
int mid=(l+r)/;
if (ql<=mid) update(index*,l,mid,ql,qr,x);
if (qr>mid) update(index*+,mid+,r,ql,qr,x);
tree[index].max=max(tree[index*].max,tree[index*+].max);
}
inline int query(int index,int l,int r,int ql,int qr)
{
if (ql<=l&&r<=qr) return tree[index].max;
if (tree[index].lazy) pushdown(index);
int mid=(l+r)/,res=;
if (ql<=mid) res=max(res,query(index*,l,mid,ql,qr));
if (qr>mid) res=max(res,query(index*+,mid+,r,ql,qr));
return res;
}
signed main()
{
n=read(),m=read();
for (int i=;i<=n;i++) tree[i].a=read();
for (int i=;i<=m;i++)
{
int l=read(),r=read(),x=read();
a[r].push_back((Node){l,x});
}
for (int i=;i<=n;i++)
{
//f[i][i]=max(f[i][i],f[i-1][j])
update(,,n,i,i,query(,,n,,i-));
//f[i][j]=f[i-1][j]+p-cost;
for (int j=;j<a[i].size();j++) update(,,n,,a[i][j].first-,a[i][j].second);
update(,,n,,i-,-tree[i].a);
}
printf("%lld",tree[].max);
return ;
}
【CF115E】Linear Kingdom Races 题解(线段树优化DP)的更多相关文章
- 理想乡题解 (线段树优化dp)
题面 思路概述 首先,不难想到本题可以用动态规划来解,这里就省略是如何想到动态规划的了. 转移方程 f[i]=min(f[j]+1)(max(i-m,0)<=j<i 且j符合士兵限定) 注 ...
- [CF115E]Linear Kingdom Races
[CF115E]Linear Kingdom Races 题目大意: 有\(n(n\le10^5)\)个物品,编号为\(1\sim n\).选取第\(i\)个物品需要\(c_i\)的代价.另外有\(m ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- POJ 2376 Cleaning Shifts (线段树优化DP)
题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...
- 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$
正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点
容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...
随机推荐
- 论TEMP临时变量与VAR静态变量区别
TEMP临时变量:顾名思义,这种变量类型是临时的,没有固定的存放数据的内存空间.每次扫描结束后则清零,在下个扫描周期开始时,这个变量的值都是不确定的,一般为0.使用临时变量需要遵循一个原则:先赋值再使 ...
- java 面向对象(三十九):反射(三)了解ClassLoader
1.类的加载过程----了解 2.类的加载器的作用 3.类的加载器的分类 4.Java类编译.运行的执行的流程 5.使用Classloader加载src目录下的配置文件 @Test public vo ...
- javascript基础(四): 操作表单
表单是什么?form-----DOM树 文本框----text 下拉框----select 单选框----radio 多选框----checkbox 隐藏域----hidden 密码框----pass ...
- linux专题(四):常用的基本命令(二)基本属性
看懂文件属性 Linux系统是一种典型的多用户系统,不同的用户处于不同的地位,拥有不同的权限.为了保护系统的安全性,Linux系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的规定. 在Li ...
- tensorflw-gpu 运行 。py程序出现gpu不匹配的问题
安装好了tensorflow-gpu版本,然后程序中写好了 with tf.device('/gpu:0'): 但是python3 .py程序时还是有错误. 报错为: 2018-04-24 12: ...
- 机器学习实战---决策树CART回归树实现
机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我 ...
- JVM详解之:java class文件的密码本
目录 简介 一个简单的class ClassFile的二进制文件 class文件的密码本 magic version 常量池 描述符 access_flags this_class和super_cla ...
- db2创建nickname
db2创建nickname创建步骤 1.创建 server create server servername type DB2/AIX version 10.5 wrapper drda authid ...
- vue : 自定义脚手架提示
做项目做烦了就想找点乐子. 比如,我们可以自定义脚手架提示. webpack.dev.conf.js 54-78 行 module.exports = new Promise((resolve, ...
- java代码之美(17) ---Java8 LocalDateTime
Java8 LocalDateTime 在java8之前我们在处理时间的时候都是用的Date,但它其实有很明显的缺点. 1.我们也会对日期做一些操作,比如加几天.加几分,当月的最后一天等等.有些计算实 ...