图的DFS与BFS
图的DFS与BFS(C++)
概述
大一学生,作为我的第一篇Blog,准备记录一下图的基本操作:图的创建与遍历。请大佬多多包涵勿喷。
图可以采用邻接表,邻接矩阵,十字链表等多种储存结构进行储存,这里为了方便演示算法,采用邻接矩阵。 图为边的权值都默认为1的无向图 。
国内大学现行教材大多是C语言实现,然而C语言其实并不适合实现ADT,故这里使用和C语言相近的C++,引入OOP的机制进行类封装,更直观和容易理解。
代码
1.首先,因为要用到DFS,这里分别采用递归的方式和非递归方式(要用到STL提供的栈),故引入头文件,BFS利用队列,引用头文件queue。
接着对图的抽象数据类型进行声明,类的属性有两个,分别是储存顶点容器vertex和储存边的容器edge,提供3个接口,分别对应三种遍历方式。
#include<iostream>
#include<queue>
#include<vector>
#include<stack>
#include<mem.h>
int inf=-9999;
using namespace std;
//为了增强复用性,这里封装成类模板,虚拟类型为T
template <class T>
struct Graph{
//存放顶点
vector<T> vertex;
//存放边
vector<vector<int>> edge;
//标记数组
bool book[100];
//构造函数
Graph(int n,int m);
//析构函数
~Graph();
//递归深度优先遍历
void DFS_recursion(int cur);
//非递归深度优先遍历
void DFS_stack(int cur);
//广度优先遍历
void BFS(int cur);
};
2.接着,定义Graph类的构造函数与析构函数,构造函数传入两个参数,对应图的定点数和边数,并创建一个book标记数组来记录定点是否访顶点,初始化book全部置为0,表示顶点都没访问。还有一点值得注意的是:这里为了方便,直接将顶点的数值设置为顶点的下标。
template <class T>
Graph<T>::Graph(int n,int m){
//为了使顶点对应的下标符合人类思维(从1起),这里的容器大小分配为n+1;
vertex.resize(n+1);
edge.resize(n+1);
for(int i=0;i<n+1;i++){
edge[i].resize(n+1);
}
//初始化邻接矩阵
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j) edge[i][j]=0;
else edge[i][j]=inf;
}
}
cout<<"请输入各条边的两个邻点"<<endl;
for(int i=1;i<=m;i++){
int a,b;
cin>>a>>b;
//这里使用无向图,故边应用edge[a][b]=edge[b][a]=1;初始化
edge[a][b]=edge[b][a]=1;
}
////因为各顶点的值为设为int类型,故为了方便,将各顶点的值初始化为其下标
for(int i=1;i<=m;i++){
vertex[i]=i;
}
//标记数组初始化
memset(book,0,100);
}
template <class T>
Graph<T>:: ~Graph(){
vertex.clear();
edge.clear();
}
3.以下分别是3种不同的图的遍历方法的实现:
template <class T>
void Graph<T>::DFS_recursion(int cur){
book[cur]=true;
cout<<vertex[cur];
for(int i=0;i<vertex.size();i++){
if(edge[cur][i]==1&&book[i]==0){
DFS_recursion(i);
}
}
}
template <class T>
void Graph<T>::DFS_stack(int cur){
stack<int> s;
s.push(cur);
while(!s.empty()){
int top=s.top();
if(book[top]==0){
cout<<top;
book[top]=1;
}
else s.pop();
for(int i=0;i<vertex.size();i++){
if(book[i]==0&&edge[top][i]==1){
s.push(i);
break;
}
}
}
return;
}
template <class T>
void Graph<T>::BFS(int cur){
queue<int> q;
q.push(cur);
book[cur]=1;
while(!q.empty()){
int front=q.front();
q.pop();
cout<<vertex[front];
for(int i=0;i<vertex.size();i++){
if(edge[front][i]==1&&book[i]==0){
q.push(i);
book[i]=1;
}
}
}
}
4.最后是测试部分:主函数创建实例,并调用类的方法完成对图的操作。这里初始化为5个节点5条边,权值都默认为1。调用时都从顶点1开始便遍历。注意:每次便利完成后都要用memset将book标记数组全部置0,表示没访问过。
int main(){
//将类模板实例化为模板类,再将模板类实例化为一个对象
Graph<T>* G=new Graph<int>(5,5);
cout<<"深度优先遍历(递归)如下:"<<endl;
G->DFS_recursion(1);
memset(G->book,0,100);
cout<<endl;
cout<<"深度优先遍历(非递归)如下:"<<endl;
G->DFS_stack(1);
memset(G->book,0,100);
cout<<endl;
cout<<"广度优先队列遍历如下:"<<endl;
G->BFS(1);
cout<<endl;
system("pause");
return 0;
}
输出结果
测试控制台输出如下:

图的DFS与BFS的更多相关文章
- 图的DFS和BFS(邻接表)
用C++实现图的DFS和BFS(邻接表) 概述 图的储存方式有邻接矩阵和邻接表储存两种.由于邻接表的实现需要用到抽象数据结构里的链表,故稍微麻烦一些.C++自带的STL可以方便的实现List,使算 ...
- Java数据结构——图的DFS和BFS
1.图的DFS: 即Breadth First Search,深度优先搜索是从起始顶点开始,递归访问其所有邻近节点,比如A节点是其第一个邻近节点,而B节点又是A的一个邻近节点,则DFS访问A节点后再访 ...
- 数据结构(11) -- 邻接表存储图的DFS和BFS
/////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...
- [数据结构]图的DFS和BFS的两种实现方式
深度优先搜索 深度优先搜索,我们以无向图为例. 图的深度优先搜索(Depth First Search),和树的先序遍历比较类似. 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发, ...
- 图的DFS与BFS遍历
一.图的基本概念 1.邻接点:对于无向图无v1 与v2之间有一条弧,则称v1与v2互为邻接点:对于有向图而言<v1,v2>代表有一条从v1到v2的弧,则称v2为v1的邻接点. 2.度:就是 ...
- 树的常见算法&图的DFS和BFS
树及二叉树: 树:(数据结构中常见的树) 树的定义
- 图、dfs、bfs
graphdfsbfs 1.clone graph2.copy list with random pointer3.topological sorting4.permutations5.subsets ...
- 树与图的DFS与BFS
树的DFS 题目:https://www.acwing.com/problem/content/848/ 代码 #include<bits/stdc++.h> using namespac ...
- 邻接矩阵实现图的存储,DFS,BFS遍历
图的遍历一般由两者方式:深度优先搜索(DFS),广度优先搜索(BFS),深度优先就是先访问完最深层次的数据元素,而BFS其实就是层次遍历,每一层每一层的遍历. 1.深度优先搜索(DFS) 我一贯习惯有 ...
随机推荐
- django admin后台管理功能的学习
1.简要说明 用过Django框架的童鞋肯定都知道,在创建完Django项目后,每个app下,都会有一个urls.py文件,里边会有如下几行: from django.contrib import a ...
- JavaScript动画实例:沿五角星形线摆动的小圆
五角星形线的笛卡尔坐标方程式可设为: r=10+(3*sin(θ*2.5))^2 x=r*cos(θ) y=r*sin(θ) (0≤θ≤2π) 根据这个曲线方程,在[0,2 ...
- ciscn_2019_c_1
0x01 检查文件,64位 检查开启的保护情况 开启了NX保护 0x02 IDA静态分析 在主函数这里并没有常见的gets栈溢出,尝试再这里面的子函数找找,发现了encrypt函数,进去查看 发现这个 ...
- 附002.Nginx全系列大总结
Nginx全系列总结如下,后期不定期更新. 欢迎基于学习.交流目的的转载和分享,禁止任何商业盗用,同时希望能带上原文出处,尊重ITer的成果,也是尊重知识. 若发现任何错误或纰漏,留言反馈或右侧添加本 ...
- 用x种方式求第n项斐波那契数,99%的人只会第一种
大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧. 本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...
- 华东师范大学p163页,用闭区间套定理证明数列的可惜收敛准则,被网友解决了。
- MyBatis动态插入的实现
mybatis通过定义前缀后缀和分割字符来拼接sql语句,实现动态插入的功能 <insert id="addNewsTypeByNewsId"> insert into ...
- CSS 技巧一则 -- 不定宽溢出文本适配滚动
在日常布局当中,肯定经常会遇到文本内容超过容器的情况.非常常见的一种解决方案是超出省略. 但是,有的时候,由于场景的限制,可能会出现在一些无法使用超出打点省略的方法的场景,譬如在导航栏中: 这种情况下 ...
- Django开发之模态框提交内容到后台[Object Object]
版本 Python 3.8.2 Django 3.0.6 场景 前端页面:使用bootstrap-table展示后台传入数据,选中多行提交修改,弹出bootstrap模态框 模态框内容:根据选中表格行 ...
- Oracle DataGuard故障转移(failover)后使用RMAN还原失败的主库
(一)DG故障转移后切换为备库的方法 在DG执行故障转移之后,主库与从库的关系就被破坏了.这个时候如果要恢复主从关系,可以使用下面的3种方法: 将失败的主库重新搭建为备库,该方法比较耗时: 使用数据库 ...