最全总结 | 聊聊 Python 数据处理全家桶(Redis篇)
1. 前言
前面两篇文章聊到了 Python 处理 Mysql、Sqlite 数据库常用方式,本篇文章继续说另外一种比较常用的数据存储方式:Redis
Redis:Remote Dictionary Server,即:远程字典服务,Redis 底层使用 C 语言编写,是一款开源的、基于内存的 NoSql 数据库
由于 Redis 性能远超其他数据库,并且支持集群、分布式及主从同步等优势,所以经常用于 缓存数据、高速读写 等场景
本篇文章就聊聊 Python 操作 Redis 正确的姿势
2. 准备
我们以在云服务器 Centos 7.8 安装 Redis-Server 为例
首先,安装在云服务器上 Redis 数据库
# 下载epel仓库
yum install epel-release
# 安装redis
yum install redis
然后,通过 vim 命令修改 Redis 配置文件,打开远程连接,设置连接密码
配置文件目录:/etc/redis.conf
bind 更改为 0.0.0.0,容许外网访问
requirepass 设置一个访问密码
# vim /etc/redis.conf
# 1、bing从127.0.0.1修改为:0.0.0.0,开放远程连接
bind 0.0.0.0
# 2、设置密码
requirepass 123456
需要指出的是,为了保证云服务器数据安全,Redis 开放远程访问的时候,一定要加强密码
接着,启动 Redis 服务,开启防火墙和端口,配置云服务器安全组
默认情况下,Redis 服务使用的端口号是 6379
另外,需要在云服务器安全组进行配置,保证 Redis 数据库能正常连接
# 启动Redis服务,默认redis端口号是6379
systemctl start redis
# 打开防火墙
systemctl start firewalld.service
# 开放6379端口
firewall-cmd --zone=public --add-port=6379/tcp --permanent
# 配置立即生效
firewall-cmd --reload
完成以上操作,我们就可以通过 Redis-CLI 或 Redis 客户端工具进行连接了
最后,要使用 Python 操作 Redis,我们需要使用 pip 安装一个依赖
# 安装依赖,便于操作redis
pip3 install redis
3. 实战
在操作 Redis 中的数据之前,我们需要利用 Host、端口号、密码实例化一个 Redis 连接对象
from redis import Redis
class RedisF(object):
def __init__(self):
# 实例化Redis对象
# decode_responses=True,如果不加则写入的为字节类型
# host:远程连接地址
# port:Redis端口号
# password:Redis授权密码
self.redis_obj = Redis(host='139.199.**.**',port=6379,password='123456',decode_responses=True,charset='UTF-8', encoding='UTF-8')
接下来我们以操作字符串、列表、set 集合、zset 集合、哈希表、事务为例,讲讲 Python 操作这些数据的方法
1、字符串操作
操作字符串有两种方式,操作方法分别是:set() 和 mset()
其中:set() 一次只能保存一个值,参数意义如下
name:key,代表键
value:value,待保存的值
ex:过期时间,以秒为单位,如果不设置,则永久不过期;否则,过期则删除
px:过期时间,以毫秒为单位
nx/xx:set 操作是否执行与 name 键是否存在有关
获取值和删除值的操作方法分别为:get(Key)、 delete(Key or Keys)
# set():单字符串操作
# 添加一个值,并设置超时时间为120s
self.redis_obj.set('name', 'airpython', ex=120)
# get():获取这个值
print(self.redis_obj.get('name'))
# delete():删除一个值或多个值
self.redis_obj.delete('name')
print(self.redis_obj.get('name'))
对于多值数据的设置,只需要调用 mset() 方法,将待插入的数据以键值对组成一个字典作为参数即可
同理,Redis 提供了 mget()方法,可以一次获取多个键的值
# mset():设置多个值
self.redis_obj.mset({"foo": "foo1", "zoo": "zoo1"})
# mget():获取多个值
result = self.redis_obj.mget("foo", "zoo")
print(result)
2、列表操作
Redis 提供了很多方法用于操作列表,其中比较常见的如下:
lpush/rpush:将一个值或多个值插入到列表头部或尾部,其中,lpush 代表头部插入;rpush 代表尾部插入数据
lset:通过索引,将值插入到列表对应的位置
linsert:在列表元素前面或后面插入数据
lindex:通过索引获取列表中的某一个元素,其中,0 代表第一个元素;-1 代表最后一个元素
lrange:通过制定起始位置和结束位置,从列表中获取指定区域的值
llen:获取列表的长度,如果 Key 对应的列表不存在,返回 0
lpop:移除并返回列表中的第一个元素
rpop:移除并返回列表中的最后一个元素
实例代码如下:
def manage_list(self):
"""
操作列表
:return:
"""
# 1、新增一个列表,并左边插入一个数据
# 注意:可以一次加入多个元素,也可以一个个元素的加入
self.redis_obj.lpush('company', '阿里', '腾讯', '百度')
# 2、移除第一个元素
self.redis_obj.lpop("company")
# 3、右边插入数据
self.redis_obj.rpush('company', '字节跳动', '小米')
# 4、移除最后一个元素
self.redis_obj.rpop("company")
# 5、获取列表的长度
self.redis_obj.llen("company")
# 6、通过索引,获取列表中的某一个元素(第二个元素)
print('列表中第二个元素是:', self.redis_obj.lindex("company", 1))
# 7、根据范围,查看列表中所有的值
print(self.redis_obj.lrange('company', 0, -1))
3、操作 Set 集合
Set 是一个无序的元素集合,集合中的元素不能重复,Redis 同样提供了很多方法,便于操作 Set 集合
其中,比较常用的方法如下:
sadd:添加元素到集合中,已经存在集合中的元素将被忽略,如果集合不存在,则新建一个集合
scard:返回集合元素的数量
smembers:返回集合中所有元素
srem:移除集合中一个或多个元素,如果元素不存在则忽略
sinter:返回两个集合的交集,结果依然是一个集合
sunion:返回两个集合的并集
sdiff:以第一个集合参数为标准,返回两个集合的差集
sunionstore:计算两个集合的并集,保存到一个新的集合中
sismember:判断集合中是否存在某个元素
spop:随机删除集合中的一个元素,并返回
具体实例代码如下:
def manage_set(self):
"""
操作set集合
:return:
"""
self.redis_obj.delete("fruit")
# 1、sadd:新增元素到集合中
# 添加一个元素:香蕉
self.redis_obj.sadd('fruit', '香蕉')
# 再添加两个元素
self.redis_obj.sadd('fruit', '苹果', '桔子')
# 2、集合元素的数量
print('集合元素数量:', self.redis_obj.scard('fruit'))
# 3、移除一个元素
self.redis_obj.srem("fruit", "桔子")
# 再定义一个集合
self.redis_obj.sadd("fruit_other", "香蕉", "葡萄", "柚子")
# 4、获取两个集合的交集
result = self.redis_obj.sinter("fruit", "fruit_other")
print(type(result))
print('交集为:', result)
# 5、获取两个集合的并集
result = self.redis_obj.sunion("fruit", "fruit_other")
print(type(result))
print('并集为:', result)
# 6、差集,以第一个集合为标准
result = self.redis_obj.sdiff("fruit", "fruit_other")
print(type(result))
print('差集为:', result)
# 7、合并保存到新的集合中
self.redis_obj.sunionstore("fruit_new", "fruit", "fruit_other")
print('新的集合为:', self.redis_obj.smembers('fruit_new'))
# 8、判断元素是否存在集合中
result = self.redis_obj.sismember("fruit", "苹果")
print('苹果是否存在于集合中', result)
# 9、随机从集合中删除一个元素,然后返回
result = self.redis_obj.spop("fruit")
print('删除的元素是:', result)
# 3、集合中所有元素
result = self.redis_obj.smembers('fruit')
print("最后fruit集合包含的元素是:", result)
4、操作 zset 集合
zset 集合相比普通 set 集合,是有序的,zset 集合中的元素包含:值和分数,其中分数用于排序
其中,比较常用的方法如下:
zadd:往集合中新增元素,如果集合不存在,则新建一个集合,然后再插入数据
zrange:通过起始点和结束点,返回集合中的元素值(不包含分数);如果设置withscores=True,则返回结果会带上分数
zscore:获取某一个元素对应的分数
zcard:获取集合中元素个数
zrank:获取元素在集合中的索引
zrem:删除集合中的元素
zcount:通过最小值和最大值,判断分数在这个范围内的元素个数
实践代码如下:
def manage_zset(self):
"""
操作zset集合
:return:
"""
self.redis_obj.delete("fruit")
# 往集合中新增元素:zadd()
# 三个元素分别是:"banana", 1/"apple", 2/"pear", 3
self.redis_obj.zadd("fruit", "banana", 1, "apple", 2, "pear", 3)
# 查看集合中所有元素(不带分数)
result = self.redis_obj.zrange("fruit", 0, -1)
# ['banana', 'apple', 'pear']
print('集合中的元素(不带分数)有:', result)
# 查看集合中所有元素(带分数)
result = self.redis_obj.zrange("fruit", 0, -1, withscores=True)
# [('banana', 1.0), ('apple', 2.0), ('pear', 3.0)]
print('集合中的元素(带分数)有:', result)
# 获取集合中某一个元素的分数
result = self.redis_obj.zscore("fruit", "apple")
print("apple对应的分数为:", result)
# 通过最小值和最大值,判断分数在这个范围内的元素个数
result = self.redis_obj.zcount("fruit", 1, 2)
print("集合中分数大于1,小于2的元素个数有:", result)
# 获取集合中元素个数
count = self.redis_obj.zcard("fruit")
print('集合元素格式:', count)
# 获取元素的值获取索引号
index = self.redis_obj.zrank("fruit", "apple")
print('apple元素的索引为:', index)
# 删除集合中的元素:zrem
self.redis_obj.zrem("fruit", "apple")
print('删除apple元素后,剩余元素为:', self.redis_obj.zrange("fruit", 0, -1))
4、操作哈希
哈希表中包含很多键值对,并且每一个键都是唯一的
Redis 操作哈希表,下面这些方法比较常用:
hset:往哈希表中添加一个键值对值
hmset:往哈希表中添加多个键值对值
hget:获取哈希表中单个键的值
hmget:获取哈希表中多个键的值列表
hgetall:获取哈希表中种所有的键值对
hkeys:获取哈希表中所有的键列表
hvals:获取哈表表中所有的值列表
hexists:判断哈希表中,某个键是否存在
hdel:删除哈希表中某一个键值对
hlen:返回哈希表中键值对个数
对应的操作代码如下:
def manage_hash(self):
"""
操作哈希表
哈希:一个键对应一个值,并且键不容许重复
:return:
"""
self.redis_obj.delete("website")
# 1、新建一个key为website的哈希表
# 往里面加入数据:baidu(field),www.baidu.com(value)
self.redis_obj.hset('website', 'baidu', 'www.alibababaidu.com')
self.redis_obj.hset('website', 'google', 'www.google.com')
# 2、往哈希表中添加多个键值对
self.redis_obj.hmset("website", {"tencent": "www.qq.com", "alibaba": "www.taobao.com"})
# 3、获取某一个键的值
result = self.redis_obj.hget("website", 'baidu')
print("键为baidu的值为:", result)
# 4、获取多个键的值
result = self.redis_obj.hmget("website", "baidu", "alibaba")
print("多个键的值为:", result)
# 5、查看hash表中的所有值
result = self.redis_obj.hgetall('website')
print("哈希表中所有的键值对为:", result)
# 6、哈希表中所有键列表
# ['baidu', 'google', 'tencent', 'alibaba']
result = self.redis_obj.hkeys("website")
print("哈希表,所有的键(列表)为:", result)
# 7、哈希表中所有的值列表
# ['www.alibababaidu.com', 'www.google.com', 'www.qq.com', 'www.taobao.com']
result = self.redis_obj.hvals("website")
print("哈希表,所有的值(列表)为:", result)
# 8、判断某一个键是否存在
result = self.redis_obj.hexists("website", "alibaba")
print('alibaba这个键是否存在:', result)
# 9、删除某一个键值对
self.redis_obj.hdel("website", 'baidu')
print('删除baidu键值对后,哈希表的数据包含:', self.redis_obj.hgetall('website'))
# 10、哈希表中键值对个数
count = self.redis_obj.hlen("website")
print('哈希表键值对一共有:', count)
5、操作事务管道
Redis 支持事务管道操作,能够将几个操作统一提交执行
操作步骤是:
首先,定义一个事务管道
然后通过事务对象去执行一系列操作
提交事务操作,结束事务操作
下面通过一个简单的例子来说明:
def manage_steps(self):
"""
执行事务操作
:return:
"""
# 1、定义一个事务管道
self.pip = self.redis_obj.pipeline()
# 定义一系列操作
self.pip.set('age', 18)
# 增加一岁
self.pip.incr('age')
# 减少一岁
self.pip.decr('age')
# 执行上面定义3个步骤的事务操作
self.pip.execute()
# 判断
print('通过上面一些列操作,年龄变成:', self.redis_obj.get('age'))
4.最后
本篇文章通过 Python 实现了对 Redis 常见数据的操作,受限于篇幅,没法对 Redis 中一些不常用的方法没法进行展开说明
我已经将文中全部源码上传到后台,关注公众号「 AirPython 」后回复「 dball 」即可获得全部源码
如果你觉得文章还不错,请大家 点赞、分享、留言下,因为这将是我持续输出更多优质文章的最强动力!
推荐阅读
Python 如何使用 HttpRunner 做接口自动化测试
最全总结 | 聊聊 Python 数据处理全家桶(Redis篇)的更多相关文章
- 最全总结 | 聊聊 Python 数据处理全家桶(PgSQL篇)
1. 前言 大家好,我是安果! Python 数据处理全家桶,截止到现在,一共写过 6 篇文章,有兴趣的小伙伴可以去了解一下! 最全总结 | 聊聊 Python 数据处理全家桶(Mysql 篇) 最全 ...
- 最全总结 | 聊聊 Python 数据处理全家桶(Sqlite篇)
1. 前言 上篇文章 聊到 Python 处理 Mysql 数据库最常见的两种方式,本篇文章继续说另外一种比较常用的数据库:Sqlite Sqlite 是一种 嵌入式数据库,数据库就是一个文件,体积很 ...
- 最全总结 | 聊聊 Python 数据处理全家桶(Memcached篇)
1. 前言 本篇文章继续继续另外一种比较常用的数据存储方式:Memcached Memcached:一款高性能分布式内存对象缓存系统,通过 内存缓存,以减少数据库的读取,从而分担数据库的压力,进而提高 ...
- 最全总结 | 聊聊 Python 数据处理全家桶(配置篇)
1.前言 在实际项目中,经常会接触到各种各样的配置文件,它可以增强项目的可维护性 常用配件文件的处理方式,包含:JSON.ini / config.YAML.XML 等 本篇文章,我们将聊聊 Pyth ...
- 最全总结 | 聊聊 Python 数据处理全家桶(Mysql 篇)
1. 前言 在爬虫.自动化.数据分析.软件测试.Web 等日常操作中,除 JSON.YAML.XML 外,还有一些数据经常会用到,比如:Mysql.Sqlite.Redis.MongoDB.Memch ...
- 最全总结 | 聊聊 Python 办公自动化之 Excel(中)
1. 前言 上一篇文章中,我们聊到使用 xlrd.xlwt.xlutils 这一组合操作 Excel 的方法 最全总结 | 聊聊 Python 办公自动化之 Excel(上) 本篇文章将继续聊另外一 ...
- 最全总结 | 聊聊 Python 办公自动化之 Excel(上)
1. 前言 在我们日常工作中,经常会使用 Word.Excel.PPT.PDF 等办公软件 但是,经常会遇到一些重复繁琐的事情,这时候手工操作显得效率极其低下:通过 Python 实现办公自动化变的很 ...
- 最全总结 | 聊聊 Python 办公自动化之 Excel(下)
1. 前言 前面谈到 Python 处理 Excel 文件最常见的两种方式,即:xlrd/xlwt.openpyxl 其中, xlrd/xlwt 这一组合,xlrd 可以负责读取数据,而 xlwt ...
- 最全总结 | 聊聊 Python 办公自动化之 Word(上)
1. 前言 日常自动化办公中,使用 Python 真的能做到事半功倍! 在上一个系列中,我们对 Python 操作 Excel 进行了一次全面总结 最全总结 | 聊聊 Python 办公自动化之 Ex ...
随机推荐
- Spring Boot系列(四):Spring Boot源码解析
一.自动装配原理 之前博文已经讲过,@SpringBootApplication继承了@EnableAutoConfiguration,该注解导入了AutoConfigurationImport Se ...
- vscode下终端返回中文乱码
用python写个爬虫,配置个VScode环境,发现输出都是乱码,翻阅网站后发现一个简单有效的方法,在此谢过网络上的大牛们的无私分享,我也在此记录一下,以备后用: 文件---->首选项----& ...
- SPSSAU数据分析思维培养系列4:数据可视化篇
本文章为SPSSAU数据分析思维培养的第4期文章. 前3期内容分别讲述数据思维,分析方法和分析思路.本文讲述如何快速使用SPSSAU进行高质量作图,以及如何选择使用正确的图形. 本文分别从五个角度进行 ...
- Shell编程—用户输入
1命令行参数 1.1读取参数 bash shell会将一些称为位置参数(positional parameter)的特殊变量分配给输入到命令行中的所有参数.这也包括shell所执行的脚本名称.位置参数 ...
- .NetCore使用Redis,StackExchange.Redis队列,发布与订阅,分布式锁的简单使用
环境:之前一直是使用serverStack.Redis的客服端,今天来使用一下StackExchange.Redis(个人感觉更加的人性化一些,也是免费的,性能也不会差太多),版本为StackExch ...
- PowerJob 在线日志饱受好评的秘诀:小但实用的分布式日志系统
本文适合有 Java 基础知识的人群 作者:HelloGitHub-Salieri HelloGitHub 推出的<讲解开源项目>系列. 项目地址: https://github.com/ ...
- SEO诊断方案以及执行方案
http://www.wocaoseo.com/thread-127-1-1.html 今天和大家一起讨论一下SEO诊断方案以及SEO执行方案要怎么写,主要从哪些方面进行呢,做SEO的朋友们一直在探讨 ...
- 8点了解Java服务端单元测试
一. 前言 单元测试并不只是为了验证你当前所写的代码是否存在问题,更为重要的是它可以很大程度的保障日后因业务变更.修复Bug或重构等引起的代码变更而导致(或新增)的风险. 同时将单元测试提前到编写正式 ...
- 由浅入深理解 IOC 和 DI
目录 由浅入深理解 IOC 和 DI 开闭原则 OCP(Open Closed Principle) 面向抽象编程 逐步理解实现 IOC 和 DI 的过程(LOL Demo 示例) 比较尴尬的编写程序 ...
- 用aop去解决事物问题(tx)记录学习之aop1.2
上一个文章我们了解了什么事aop,以及aop的使用方法,主要是把自己想要加入的通知(advice)加入到我们的方法里, 比如上一章我们说的事把myadvice类中的before方法织入到userser ...