T1:

来源:Codeforces -  Classroom Watch

Describe:

给出一个正整数 n,现在问存在多少个 x,使得  x在十进制下的每一位之和加上 x 等于 n。

Solution:

考场上一眼没看出来,之后又想了一会儿,想了一种比较常规的方法:

___

对于一个数 xyz (这里以三位数为例,另外位数同理),我们要让这个数与它各个数位上的和相加等于n,即:

100x+10y+z+x+y+z=101x+11y+2z=n

考后知道的确有dalao用了九重循环水过了,但我那个时候觉得效率太低,就觉得可以用深搜做,我开了这么一个数组:

num[11]={0,2,11,101,1001,10001,100001,1000001,10000001,100000001,1000000001}

对于当前递归到的每个数,从大到小减这些数,当该数组指针指向num[1]时,就进行判断当前枚举到的数能否被2整除,此外还有再判断剩下的数最大是否可能大于当前数,小于则之间返回。

然后,我就要写完这个方法时,时间已经过去了1个小时了...我突然想到,这个数既然是等于一个数加上各个数位上的数,那么这个数与原数之差绝对不会超过81,所以我们直接暴力就行。

我为了防止小的数可能出现一些特殊情况,我就在0-1000的范围内直接暴力,1000以上的数我再用上述做法。

悲剧的是...我再拆数的时候,对于每一个数本应该是temp = temp + x % 10,因为以前习惯性操作,我写成了temp = temp * 10 + x % 10...

虽然我再最后及时发现了,但是我只改了0-1000范围内的数,后面的因为我是粘贴了0-1000的做法,随意仍然是temp = temp * 10 + x % 10,然后就只拿到了20分。

以后对于粘贴上文内容还是得慎用!

Code:

#include<bits/stdc++.h>
using namespace std; int n, ans[1000010], cnt = 0; int main() {
freopen("num.in", "r", stdin);
freopen("num.out", "w", stdout);
scanf("%d", &n);
if (n <= 1000) {
for (int i = 1; i <= n; ++ i) {
int x = i;
int Temp = i;
while(x) {
Temp = Temp + x % 10;
x /= 10;
}
if (Temp == n) ans[++ cnt] = i;
}
}
else {
for (int i = n - 120; i <= n; ++ i) {
int x = i;
long long Temp = 0;
while(x) {
Temp = Temp * 10 + x % 10;
x /= 10;
}
if (Temp == n) ans[++ cnt] = i;
}
}
printf("%d\n", cnt);
for (int i = 1; i <= cnt; ++ i) printf("%d ", ans[i]); puts("");
return 0;
}

T2:

应该是本校集训时候的出的题,就不放题面了。

给出三个数A,B,C,A-a=B-b=C-a-b=x,求出x.

Solution:

我们将这个等式拆开:

1.A-a=C-a-b,所以A=C-b;

2.B-b=C-a-b,所以B=C-a

3.A-a=B-b,所以A-B=a-b.

我们发现A+B-C=x,所以直接输出A-B+C即可。

Code:

#include<bits/stdc++.h>
using namespace std; int T, A, B, C; int main() {
freopen("combo.in", "r", stdin);
freopen("combo.out", "w", stdout);
scanf("%d", &T);
for (int i = 1; i <= T; ++ i) {
scanf("%d%d%d", &A, &B, &C);
printf("%d\n", A + B - C);
}
return 0;
}

然后不知道什么原因,我在我考试的文件夹里只找到四个.in和.out,就是这题没有。所以...我freopen打错了...直接爆零...

我考完后改了过来就AC了...

虽然就算这道题按照满分来算了,我的分数也并不高,而且还有几个AK的大佬;对于之前的成绩来说,我最近的成绩的确处在下滑阶段,我却又只能看着这画面自叹不如?辛酸...

T3:

一个n*m的网格图,a[i][j]表示这个点上的高度,求表面积.

Solution:

我们只需计算左前或右后面的面积,乘两倍后同时加上两倍的n*m即可,我认为正常考试第二水的题。

Code:

#include<bits/stdc++.h>
using namespace std; const int H = 110, W = 110;
int n, m, a[H][W]; int main() {
freopen("surface.in", "r", stdin);
freopen("surface.out", "w", stdout);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++ i)
for (int j = 1; j <= m; ++ j)
scanf("%d", &a[i][j]);
int Temp = 0;
for (int i = 1; i <= n; ++ i)
for (int j = 1; j <= m; ++ j)
Temp += max(a[i][j] - a[i][j - 1], 0) + max(a[i][j] - a[i - 1][j], 0);
printf("%d\n", Temp * 2 + n * m * 2);
return 0;
}

T4:

类比八皇后,在n*n的棋盘上,给出起始点和终止点,问起始点按1.向上两格向左一格;2.向上两格向右一格;3.向右两格;4.向下两格向右一格;5.向下两格向左一格;6.向左两格的方式进行移动,问到终止点的最少步数是多少。并说明路径,按以上顺序,分别是UL, UR, R, LR, LL, L。

Solution:

第一问广度优先搜索裸题,并在搜索时记录由谁转移而来,第二问通过该记录方式递归求出解,要注意递归时需将方向顺序倒置。

Code:

#include<bits/stdc++.h>
using namespace std; const int N = 200;
int n, a, b, c, d; int head, tail, q[40050][3], dis[N + 12][N + 21], pre[N + 10][N + 10][2]; void dfs(int x, int y) {
if (x == a && y == b) return ;
int x0 = pre[x][y][0], y0 = pre[x][y][1];
dfs(x0, y0);
if (x0 + 2 == x && y0 + 1 == y) printf("LR ");
if (x0 + 2 == x && y0 - 1 == y) printf("LL ");
if (x0 - 2 == x && y0 + 1 == y) printf("UR ");
if (x0 - 2 == x && y0 - 1 == y) printf("UL ");
if (x0 == x && y0 - 2 == y) printf("L ");
if (x0 == x && y0 + 2 == y) printf("R ");
} int main() {
freopen("redqueen.in", "r", stdin);
freopen("redqueen.out", "w", stdout);
scanf("%d%d%d%d%d", &n, &a, &b, &c, &d);
-- n;
memset(dis, 0x3f, sizeof(dis));
dis[a][b] = 0;
q[tail = 1][0] = a, q[tail][1] = b;
head = 0;
while(head <= tail) {
int nx = q[++ head][0], ny = q[head][1];
if (dis[nx][ny] + 1 < dis[nx - 2][ny - 1] && nx - 2 >= 0 && ny - 1 >= 0) {
q[++ tail][0] = nx - 2;
q[tail][1] = ny - 1;
dis[nx - 2][ny - 1] = dis[nx][ny] + 1;
pre[nx - 2][ny - 1][0] = nx;
pre[nx - 2][ny - 1][1] = ny;
}
if (dis[nx][ny] + 1 < dis[nx - 2][ny + 1] && nx - 2 >= 0 && ny + 1 <= n) {
q[++ tail][0] = nx - 2;
q[tail][1] = ny + 1;
dis[nx - 2][ny + 1] = dis[nx][ny] + 1;
pre[nx - 2][ny + 1][0] = nx;
pre[nx - 2][ny + 1][1] = ny;
}
if (dis[nx][ny] + 1 < dis[nx][ny + 2] && ny + 2 <= n) {
q[++ tail][0] = nx;
q[tail][1] = ny + 2;
dis[nx][ny + 2] = dis[nx][ny] + 1;
pre[nx][ny + 2][0] = nx;
pre[nx][ny + 2][1] = ny;
}
if (dis[nx][ny] + 1 < dis[nx + 2][ny + 1] && nx + 2 <= n && ny + 1 <= n) {
q[++ tail][0] = nx + 2;
q[tail][1] = ny + 1;
dis[nx + 2][ny + 1] = dis[nx][ny] + 1;
pre[nx + 2][ny + 1][0] = nx;
pre[nx + 2][ny + 1][1] = ny;
}
if (dis[nx][ny] + 1 < dis[nx + 2][ny - 1] && nx + 2 <= n && ny - 1 >= 0) {
q[++ tail][0] = nx + 2;
q[tail][1] = ny - 1;
dis[nx + 2][ny - 1] = dis[nx][ny] + 1;
pre[nx + 2][ny - 1][0] = nx;
pre[nx + 2][ny - 1][1] = ny;
}
if (dis[nx][ny] + 1 < dis[nx][ny - 2] && ny - 2 >= 0) {
q[++ tail][0] = nx;
q[tail][1] = ny - 2;
dis[nx][ny - 2] = dis[nx][ny] + 1;
pre[nx][ny - 2][0] = nx;
pre[nx][ny - 2][1] = ny;
}
}
if (dis[c][d] == 0x3f3f3f3f) {
puts("Impossible");
}
else {
printf("%d\n", dis[c][d]);
dfs(c, d);
puts("");
}
return 0;
}

T5:

给出一个长度为n的序列a,并给出k,x,a[1]=1,a[n]=x,k为a[2...n-1]的取值范围,问序列中进行填数,使序列中相邻没有相同的数,求方案数%(1e9+7)的值。

Solution:

考场上推了一些,因为脑袋比较混,没有推出来,考后又推了一些,具体如下:

因为a[1]固定,所以a[2]有k-1种情况,a[2]固定,a[3]也有k-1种情况...a[n-2]有k-1种情况,而到了a[n-1]时,则需让a[n-1]既不等于a[n-2],也不等于x.

显然我们需要考虑a[n-1]是某数的可能性,那么我们可以由a[n-2]的可能性推来(因为a[n-2]不像a[n-1]是特殊情况),在a[1...n-2]中,我们发现是有一定规律的,而2...k中的数所有的数不管目前i(i=1...n-2)是谁,每个数出现的可能性都是一样的,只有1有的次数有不同,所以我们可以把f[i]拆开(f[i]为1...k中所有数出现的方案数),一个为1的方案数,一个为2...k的方案数。

那我们将f[i]的值分开,即[i]为1的方案数和f[i]为2...k的方案数(2...k算一种),分别设为p,q。

i=1时,p=1,q=0;

i=2时,p=0,q=1;

i=3时,p=k-1,q=k-2.

我们发现t个1会产生t个2...k,t个2...k会产生t*(k-1)个1,t*(k-2)个2...k.

举个例子:

k=4时,

所以我们可以从3枚举至n-2,求出最后的p,q.

之后我们便可以对a[n-1]进行分类讨论了:

1. x=1:

当a[n-2]=1,a[n-1]可以取2...k中的任意数,则ans += p*(k-1) (2...k中有k-1个数);

当a[n-2]=2...k中的任意一数时,会产生k-2的贡献,因为2...k有k-1个数,则ans += q * (k - 2) * (k - 1);

2. x!==1:

当a[n-2]=1,a[n-1]可以取2...k中的任意不等于x的数,所以一个数产生的贡献为k-2,所以总贡献为q*(k-1)*(k-2);

当a[n-2]=2...k中的任意一数时,我们再进行讨论:

1.a[n-2]=x,会产生k-1的贡献,由于只有一个数,所以总贡献为q*(k-1).

2.a[n-2]!=x,每个数会产生k-2的贡献,这种情况有k-2个数,所以总贡献为q*(k-2)*(k-2).

但是这种做法不知道为什么在x=1的情况下通过了所有的数据点,但在x!=1时WA了好几个点,只有70分,至今不明白.


第二天:我们发现k是int类型的,那么(k-2)*(k-2)就爆int了,所以把k的类型改为long long就行...

Code:

#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int Mod = 1000000000 + 7; int n, k, x;
ll ans = 0; int main() {
freopen("construct.in", "r", stdin);
freopen("construct.out", "w", stdout);
scanf("%d%d%d", &n, &k, &x);
ll p = 0, q = 1;
//p is the number of one, q is the number of the pair of 2...k
for (int i = 3; i < n - 1; ++ i) {
ll temp = p;
p = q * (k - 1);
p %= Mod;
q *= (k - 2) % Mod;
q += temp;
q %= Mod;
}
if (x == 1) {
ans += p * (k - 1);
ans %= Mod;
ans += q * (k - 2) % Mod * (k - 1);
ans %= Mod;
}
else {
ans += q * ((k - 2) % Mod * (k - 2) + k - 1);
ans %= Mod;
ans += p * (k - 2);
ans %= Mod;
}
printf("%lld\n", ans % Mod);
return 0;
}

20190531模拟赛总结&反思的更多相关文章

  1. 『2019/4/9 TGDay2模拟赛 反思与总结』

    2019/4/9 TGDay2模拟赛 今天是\(TG\)模拟赛的第二天了,试题难度也是相应地增加了一些,老师也说过,这就是提高组的难度了.刚开始学难的内容,一道正解也没想出来,不过基本的思路也都是对了 ...

  2. 『2019/4/8 TGDay1模拟赛 反思与总结』

    2019/4/8 TGDay1模拟赛 这次是和高一的学长学姐们一起参加的\(TG\)模拟考,虽然说是\(Day1\),但是难度还是很大的,感觉比\(18\)年的\(Day1\)难多了. 还是看一下试题 ...

  3. 冲刺$\mathfrak{CSP-S}$集训模拟赛总结

    开坑.手懒并不想继续一场考试一篇文. 既没必要也没时间侧边栏的最新随笔题解反思相间也丑 而且最近越来越懒了竟然都不写题解了……开坑也是为了督促自己写题解. 并不想长篇大论.简要题解也得写啊QAQ. 目 ...

  4. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  5. NOI模拟赛 Day1

    [考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...

  6. NOIP第7场模拟赛题解

    NOIP模拟赛第7场题解: 题解见:http://www.cqoi.net:2012/JudgeOnline/problemset.php?page=13 题号为2221-2224. 1.car 边界 ...

  7. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  8. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  9. 小奇模拟赛9.13 by hzwer

    2015年9月13日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿(explo) [题目背景] 小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值w)的飞船,按既定路线依次飞 ...

随机推荐

  1. Java多线程_同步工具CyclicBarrier

    CyclicBarrier概念:CyclicBarrier是多线程中的一个同步工具,它允许一组线程互相等待,直到到达某个公共屏障点.形象点儿说,CyclicBarrier就是一个屏障,要求这一组线程中 ...

  2. Python编程进阶,Python如何实现多进程?

    进程part1 一.进程介绍 1.获取子父进程 2.进程的基本使用 2.创建带有参数的进程 3.进程之间的数据彼此隔离 4.多个进程之间的异步并发 二.join 1.基本语法 2.使用自定义类的方法创 ...

  3. unity physics相关

    1. With careful positioning and sizing, compound colliders can often approximate the shape of an obj ...

  4. lombok配置

    lombok在springboot中无需配置即可在控制台输出. 一般使用backlog.xml作为配置文件. 在application中指定backlog位置 不做任何配置时候,logback.xml ...

  5. Python基本

    Python基本规则 1.面向对象的跨平台的编程语言 2.文件类型是.py, 3.一个文件是一个模块module,运行整个文件 4.不支持非英文字符,区分大小写 5.一行是一条语句,多条语句写一行用; ...

  6. 跟着兄弟连系统学习Linux-【day07】

    day07-20200604 p25.vim常用操作 vim需要经常练习,一般用于修改配置文件.

  7. Spring security OAuth2.0认证授权学习第二天(基础概念-授权的数据模型)

    如何进行授权即如何对用户访问资源进行控制,首先需要学习授权相关的数据模型. 授权可简单理解为Who对What(which)进行How操作,包括如下: Who,即主体(Subject),主体一般是指用户 ...

  8. sql server 2008 merge matched判定条件

    SQL Server 2008 开始支持 MERGE语句    -- 源表 CREATE TABLE test_from (id INT, val VARCHAR(20));   -- 目标表 CRE ...

  9. 杭电oj2093题,Java版

    杭电2093题,Java版 虽然不难但很麻烦. import java.util.ArrayList; import java.util.Collections; import java.util.L ...

  10. python应用 处理excel数据

    实现功能 excel表格中有4列数,分别为RMF计算得到的 β,γ,势能面及组态,需要挑选出相同 β 值下势能面最低时的组态.为了减小数据量,先将 β 值保留两位小数. 代码 import xlrd ...