题目链接

http://poj.org/problem?id=1426

题意

输入一个数n,输出任意一个 只含0、1且能被n整除的数m。保证n<=200,m最多100位。

题解

DFS/BFS都能做。

这里使用DFS。然后T了。就变成了打表A了。emm ,m最多会19位,这点我也很迷==。

其他

使用了Java大数,get了打开方式。

todo

  • 为啥m19??
  • BFS法
  • 0/1背包法
  • 和鸽笼原理有什么关系?

代码

打表A版

import java.math.BigInteger;
import java.util.Scanner; public class Main { static int num;
static boolean tag; static BigInteger[] arr=new BigInteger[201];
static String[] ans= {"0","1","10","1000000000000000011","100","10","1000000000000000110","1000000000000000111","1000","1000000000011111111","10","100000000000000001","1000000000000001100","1000000000000001","10000000000000010","1000000000000000110","10000","10000000000000101","1000000000111111110","1000000000000001101","100","10000000000000101","1000000000000000010","1000000000000010111","1000000000000011000","100","10000000000000010","1000000000101111111","100000000000000100","1000000000000000111","1000000000000000110","1000000000000110011","100000","1000000000000101111","100000000000001010","10000000000000010","1000000001111111100","100000000000000011","10000000000000110","10000000000000101","1000","1000000000000010111","100000000000001010","1000000000000010101","100000000000000100","1000000000111111110","100000000000001110","1000000000000101","1000000000000110000","1000000000000011101","100","10000000000000101","100000000000000100","1000000000000000011","1000000001101111110","1000000000000000010","1000000000000001000","1000000000000011","1000000000000001010","10000000000000011","1000000000000001100","1000000000000011","100000000001110010","1000000001011101111","1000000","10000000000000010","1000000000000111110","100000000000011","1000000000000010100","100000000000011","10000000000000010","1000000000000100101","1000000011111111000","1000000000001","1000000000000000110","1000000000000001100","100000000000001100","1000000000000001","100000000000001010","100000000000110001","10000","1000000000111111101","1000000000000110110","100000000000001101","1000000000000010100","100000000000001010","100000000000010010","100000000000000101","1000000000000001000","1000000000000011011","1000000000111111110","1000000000000001","1000000000000011100","1000000000001111001","10000000000001010","10000000000000110","1000000000001100000","100000000001111","1000000000000111110","1101111111111111111","100","1000000000000000001","100000000000001010","100000000000000001","1000000000000001000","100000000000001010","100000000010000110","10000000000001001","1000000001111111100","1000000000001000011","1000000000000000010","100000000000000011","100000000000110000","1000000000000111101","10000000000000110","100000000000001110","10000000000000100","1000000001101111101","100000000000000110","10000000000000101","1000000000000011000","1000000000000101111","10000000000000110","1000000001100011001","1000000000011100100","1000","1000000001111011110","1000000000000110101","10000000","10000000000001001","10000000000000010","10000000001101","1000000000010111100","1000000000001010001","1000000000000110","1000000001101111110","100000000000111000","1000000000001","1000000000000110","1000000000001001111","100000000000000100","1000000000000101","1000000000011110","1000000000000001","1000000111111110000","1000000000000001010","10000000000010","100000000000011111","1000000000000010100","10000000000001111","1000000000000001100","1000000000010111001","1000000000000011000","1000000000111111101","10000000000000010","100000000001110010","1000000000000010100","1000000000000101","1000000000001100010","1000000000000000011","100000","1000000000001101001","100000000111111110","1000000000011011101","1000000000001110100","1000000000000111110","1000000000000011010","1000000000001001101","10000000000011000","1000000000001100111","100000000000001010","1000000000111111011","1000000000000100100","1000000000000010111","1000000000000001010","100000000000000100","100000000000010000","10000000000000011","100000000000001110","1000000000000100111","1000000001111111100","10000000000000111","10000000000000010","1000000000000011","100000000000011000","1000000000000000110","10000000001101110","100000000001001001","100000000000010100","1000000010111010111","10000000000000110","1000000000011111101","1000000000011000000","1000000010000100001","1000000000011110","100000000000001010","100000000010010100","100000000000111001","1111111111111111110","1000000000101111001","1000"}; public static void main(String args[]) {
// //打表
// for(int i=1;i<201;++i) {
// tag=false;
// dfs(BigInteger.valueOf(1),i,1);
// System.out.print("\"");
// System.out.print(arr[i]);
// System.out.print("\"");
// System.out.print(",");
// } Scanner in=new Scanner(System.in);
while(in.hasNext()) {
int num=in.nextInt();
if(num==0) {break;}
System.out.println(ans[num]);
}
} public static void dfs(BigInteger x,int num,int layer) {
if(tag) {return;}//
if(x.mod(BigInteger.valueOf(num))==BigInteger.ZERO) {
//System.out.println(x);
arr[num]=x;
tag=!tag;
return;
}
if(layer==19) {return;}
dfs(x.multiply(BigInteger.valueOf(10)),num,layer+1);
dfs(x.multiply(BigInteger.valueOf(10)).add(BigInteger.ONE),num,layer+1);
}
}

DFS T版,估计是JAVA大数T的?C++用unsigned long long这么写感觉不会T?

import java.math.BigInteger;
import java.util.Scanner; public class Main { static int num;
static boolean tag; public static void main(String args[]) {
Scanner in=new Scanner(System.in);
while(in.hasNext()) {
int num=in.nextInt();
if(num==0) {break;}
tag=false;
dfs(BigInteger.valueOf(1),num,1);
}
} public static void dfs(BigInteger x,int num,int layer) {
if(tag) {return;}//
if(x.mod(BigInteger.valueOf(num))==BigInteger.ZERO&&!tag) {
System.out.println(x);
tag=!tag;
return;
}
if(layer==19) {return;}
dfs(x.multiply(BigInteger.valueOf(10)),num,layer+1);
dfs(x.multiply(BigInteger.valueOf(10)).add(BigInteger.ONE),num,layer+1);
}
}

[POJ]Find The Multiple(DFS)的更多相关文章

  1. POJ 1321 棋盘问题 --- DFS

    POJ 1321 题目大意:给定一棋盘,在其棋盘区域放置棋子,需保证每行每列都只有一颗棋子. (注意 .不可放 #可放) 解题思路:利用DFS,从第一行开始依次往下遍历,列是否已经放置棋子用一个数组标 ...

  2. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  3. poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)

    http://poj.org/problem?id=3373 Changing Digits Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  4. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  5. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

  6. 开篇,UVA 755 && POJ 1002 487--3279 (Trie + DFS / sort)

    博客第一篇写在11月1号,果然die die die die die alone~ 一道不太难的题,白书里被放到排序这一节,半年前用快排A过一次,但是现在做的时候发现可以用字典树加深搜,于是乐呵呵的开 ...

  7. poj 1416 Shredding Company( dfs )

    我的dfs真的好虚啊……,又是看的别人的博客做的 题目== 题目:http://poj.org/problem?id=1416 题意:给你两个数n,m;n表示最大数,m则是需要切割的数. 切割m,使得 ...

  8. poj 1129 Channel Allocation ( dfs )

    题目:http://poj.org/problem?id=1129 题意:求最小m,使平面图能染成m色,相邻两块不同色由四色定理可知顶点最多需要4种颜色即可.我们于是从1开始试到3即可. #inclu ...

  9. POJ 1699 Best Sequence dfs

    题目: http://poj.org/problem?id=1699 无意间A了..超时一次,加了一句 if(len > ans)return; 然后就A了,dfs题,没有太多好说的,代码写的效 ...

随机推荐

  1. 树上的等差数列 [树形dp]

    树上的等差数列 题目描述 给定一棵包含 \(N\) 个节点的无根树,节点编号 \(1\to N\) .其中每个节点都具有一个权值,第 \(i\) 个节点的权值是 \(A_i\) . 小 \(Hi\) ...

  2. Docker: docker pull, wget, curl, git clone 等如何更快?

    1) Docker 配置 1.1) daemon.json 配置镜像 路径: /etc/docker/daemon.json 文档: Config Daemon registry-mirrors 设定 ...

  3. R 安装包的方法

    install.packages(packageName) install.packages(path_to_file, repos = NULL, type="source") ...

  4. Spark QuantileDiscretizer 分位数离散器

    1.概念 接收具有连续特征的列,并输出具有合并分类特征的列.按分位数,对给出的数据列进行离散化分箱处理. 和Bucketizer(分箱处理)一样也是:将连续数值特征转换为离散类别特征.实际上Class ...

  5. 5.SSH 免密码登陆

    SSH 免密码登陆 serverA 机器上 userA 用户,想要免密钥登陆到serverB机器上 1.集群中的所有机器 安装ssh 服务端sudo apt-get updatesudo apt-ge ...

  6. springboot整合druid监控配置

    方式一:直接引入druid 1.maven坐标 <dependency> <groupId>com.alibaba</groupId> <artifactId ...

  7. HTML5实战与剖析之媒体元素

    随着HTML5的到来,flash在手机端全部不能得到支持,这就使一项以flash制作的音乐播放和视频播放只能用HTML5中的媒体标签video标签和audio标签来制作了.很恰巧的是,移动端对HTML ...

  8. VMD的相关命令(转载)

    转载自:http://blog.sina.com.cn/s/blog_b48a7ac30102w6xg.html 自我学习总结: 1.打开VMD main上Extensions中的TkConsole这 ...

  9. java23种设计模式—— 二、单例模式

    源码在我的github和gitee中获取 介绍 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式. ...

  10. express综合用法

    一.创建: 1.先导入express第三方文件(我设置的全局) npm i express -g 2.加载express const express = require("express&q ...