题目链接

http://poj.org/problem?id=1426

题意

输入一个数n,输出任意一个 只含0、1且能被n整除的数m。保证n<=200,m最多100位。

题解

DFS/BFS都能做。

这里使用DFS。然后T了。就变成了打表A了。emm ,m最多会19位,这点我也很迷==。

其他

使用了Java大数,get了打开方式。

todo

  • 为啥m19??
  • BFS法
  • 0/1背包法
  • 和鸽笼原理有什么关系?

代码

打表A版

import java.math.BigInteger;
import java.util.Scanner; public class Main { static int num;
static boolean tag; static BigInteger[] arr=new BigInteger[201];
static String[] ans= {"0","1","10","1000000000000000011","100","10","1000000000000000110","1000000000000000111","1000","1000000000011111111","10","100000000000000001","1000000000000001100","1000000000000001","10000000000000010","1000000000000000110","10000","10000000000000101","1000000000111111110","1000000000000001101","100","10000000000000101","1000000000000000010","1000000000000010111","1000000000000011000","100","10000000000000010","1000000000101111111","100000000000000100","1000000000000000111","1000000000000000110","1000000000000110011","100000","1000000000000101111","100000000000001010","10000000000000010","1000000001111111100","100000000000000011","10000000000000110","10000000000000101","1000","1000000000000010111","100000000000001010","1000000000000010101","100000000000000100","1000000000111111110","100000000000001110","1000000000000101","1000000000000110000","1000000000000011101","100","10000000000000101","100000000000000100","1000000000000000011","1000000001101111110","1000000000000000010","1000000000000001000","1000000000000011","1000000000000001010","10000000000000011","1000000000000001100","1000000000000011","100000000001110010","1000000001011101111","1000000","10000000000000010","1000000000000111110","100000000000011","1000000000000010100","100000000000011","10000000000000010","1000000000000100101","1000000011111111000","1000000000001","1000000000000000110","1000000000000001100","100000000000001100","1000000000000001","100000000000001010","100000000000110001","10000","1000000000111111101","1000000000000110110","100000000000001101","1000000000000010100","100000000000001010","100000000000010010","100000000000000101","1000000000000001000","1000000000000011011","1000000000111111110","1000000000000001","1000000000000011100","1000000000001111001","10000000000001010","10000000000000110","1000000000001100000","100000000001111","1000000000000111110","1101111111111111111","100","1000000000000000001","100000000000001010","100000000000000001","1000000000000001000","100000000000001010","100000000010000110","10000000000001001","1000000001111111100","1000000000001000011","1000000000000000010","100000000000000011","100000000000110000","1000000000000111101","10000000000000110","100000000000001110","10000000000000100","1000000001101111101","100000000000000110","10000000000000101","1000000000000011000","1000000000000101111","10000000000000110","1000000001100011001","1000000000011100100","1000","1000000001111011110","1000000000000110101","10000000","10000000000001001","10000000000000010","10000000001101","1000000000010111100","1000000000001010001","1000000000000110","1000000001101111110","100000000000111000","1000000000001","1000000000000110","1000000000001001111","100000000000000100","1000000000000101","1000000000011110","1000000000000001","1000000111111110000","1000000000000001010","10000000000010","100000000000011111","1000000000000010100","10000000000001111","1000000000000001100","1000000000010111001","1000000000000011000","1000000000111111101","10000000000000010","100000000001110010","1000000000000010100","1000000000000101","1000000000001100010","1000000000000000011","100000","1000000000001101001","100000000111111110","1000000000011011101","1000000000001110100","1000000000000111110","1000000000000011010","1000000000001001101","10000000000011000","1000000000001100111","100000000000001010","1000000000111111011","1000000000000100100","1000000000000010111","1000000000000001010","100000000000000100","100000000000010000","10000000000000011","100000000000001110","1000000000000100111","1000000001111111100","10000000000000111","10000000000000010","1000000000000011","100000000000011000","1000000000000000110","10000000001101110","100000000001001001","100000000000010100","1000000010111010111","10000000000000110","1000000000011111101","1000000000011000000","1000000010000100001","1000000000011110","100000000000001010","100000000010010100","100000000000111001","1111111111111111110","1000000000101111001","1000"}; public static void main(String args[]) {
// //打表
// for(int i=1;i<201;++i) {
// tag=false;
// dfs(BigInteger.valueOf(1),i,1);
// System.out.print("\"");
// System.out.print(arr[i]);
// System.out.print("\"");
// System.out.print(",");
// } Scanner in=new Scanner(System.in);
while(in.hasNext()) {
int num=in.nextInt();
if(num==0) {break;}
System.out.println(ans[num]);
}
} public static void dfs(BigInteger x,int num,int layer) {
if(tag) {return;}//
if(x.mod(BigInteger.valueOf(num))==BigInteger.ZERO) {
//System.out.println(x);
arr[num]=x;
tag=!tag;
return;
}
if(layer==19) {return;}
dfs(x.multiply(BigInteger.valueOf(10)),num,layer+1);
dfs(x.multiply(BigInteger.valueOf(10)).add(BigInteger.ONE),num,layer+1);
}
}

DFS T版,估计是JAVA大数T的?C++用unsigned long long这么写感觉不会T?

import java.math.BigInteger;
import java.util.Scanner; public class Main { static int num;
static boolean tag; public static void main(String args[]) {
Scanner in=new Scanner(System.in);
while(in.hasNext()) {
int num=in.nextInt();
if(num==0) {break;}
tag=false;
dfs(BigInteger.valueOf(1),num,1);
}
} public static void dfs(BigInteger x,int num,int layer) {
if(tag) {return;}//
if(x.mod(BigInteger.valueOf(num))==BigInteger.ZERO&&!tag) {
System.out.println(x);
tag=!tag;
return;
}
if(layer==19) {return;}
dfs(x.multiply(BigInteger.valueOf(10)),num,layer+1);
dfs(x.multiply(BigInteger.valueOf(10)).add(BigInteger.ONE),num,layer+1);
}
}

[POJ]Find The Multiple(DFS)的更多相关文章

  1. POJ 1321 棋盘问题 --- DFS

    POJ 1321 题目大意:给定一棋盘,在其棋盘区域放置棋子,需保证每行每列都只有一颗棋子. (注意 .不可放 #可放) 解题思路:利用DFS,从第一行开始依次往下遍历,列是否已经放置棋子用一个数组标 ...

  2. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  3. poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)

    http://poj.org/problem?id=3373 Changing Digits Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  4. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  5. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

  6. 开篇,UVA 755 && POJ 1002 487--3279 (Trie + DFS / sort)

    博客第一篇写在11月1号,果然die die die die die alone~ 一道不太难的题,白书里被放到排序这一节,半年前用快排A过一次,但是现在做的时候发现可以用字典树加深搜,于是乐呵呵的开 ...

  7. poj 1416 Shredding Company( dfs )

    我的dfs真的好虚啊……,又是看的别人的博客做的 题目== 题目:http://poj.org/problem?id=1416 题意:给你两个数n,m;n表示最大数,m则是需要切割的数. 切割m,使得 ...

  8. poj 1129 Channel Allocation ( dfs )

    题目:http://poj.org/problem?id=1129 题意:求最小m,使平面图能染成m色,相邻两块不同色由四色定理可知顶点最多需要4种颜色即可.我们于是从1开始试到3即可. #inclu ...

  9. POJ 1699 Best Sequence dfs

    题目: http://poj.org/problem?id=1699 无意间A了..超时一次,加了一句 if(len > ans)return; 然后就A了,dfs题,没有太多好说的,代码写的效 ...

随机推荐

  1. 每日一道 LeetCode (19):合并两个有序数组

    每天 3 分钟,走上算法的逆袭之路. 前文合集 每日一道 LeetCode 前文合集 代码仓库 GitHub: https://github.com/meteor1993/LeetCode Gitee ...

  2. 浏览器自动化的一些体会3 webBrowser控件之零碎问题

    1. 一般需要执行这一句:webBrowser1.ScriptErrorsSuppressed = true; 主要目的是禁止跳出javascript错误的对话框,否则会导致程序无法正确地跑下去.缺点 ...

  3. 【转载】PyChram简单使用教程

    原文链接:https://www.cnblogs.com/yamei/p/5519818.html 一.PyChram下载官网:http://www.jetbrains.com/pycharm Win ...

  4. 3.MongoDB恢复探究:为什么oplogReplay参数只设置了日志应用结束时间oplogLimit,而没有设置开始时间?

    (一)问题 在使用MySQL数据库binlog日志基于时间点恢复数据库时,我们必须要指定binlog的开始位置和结束位置,而在MongoDB里面,如果使用oplog进行恢复,只有oplogLimit参 ...

  5. Banner信息收集

    一.什么是Banner Banner信息,欢迎语,在banner信息中可以得到软件开发商,软件名称.版本.服务类型等信息,通过这些信息可以使用某些工具直接去使用相对应的exp去攻击. 前提条件:需要和 ...

  6. Python之运维

    这几日一直研究运维监控的事情,有次看见有一个脚本写的还不错,如今已经找不到地址了 就只能用Python代替shell了 其中原理是 监控 /proc/下的各种文件,/proc/ 顾名思义其为进程的文件 ...

  7. Robot Framework(2)——简单运行案例

    1.打开RIDE 之前介绍的3种方式都可以 2.创建工程和测试套件 1>点击File-New Project ①Name:工程命名 ②Parent Directory:上级目录,工程会创建在这个 ...

  8. 常用生成模型代码大全(pytorch/tensorflow)

    感谢大佬开源分享 代码详见:https://github.com/wiseodd/generative-models

  9. (新手向)N皇后问题详解(DFS算法)

    非常经典的一道题: N皇后问题: 国际象棋中皇后的势力范围覆盖其所在的行.列以及两条对角线,现在考察如下问题:如何在n x n的棋盘上放置n个皇后,使得她们彼此互不攻击 . 免去麻烦我们这里假定n不是 ...

  10. go语言之接口

    一:接口的基本概念 1 接口声明 接口字面量,接口命名类型,接口声明使用interface关键字. 1)接口字面量类型声明语法如下: interface{ methodSignature1 metho ...