LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形
原题
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height =
[2,1,5,6,2,3].
The largest rectangle is shown in the shaded area, which has area =
10unit.
示例
Given heights =
[2,1,5,6,2,3],
return10.
解题思路
第一阶段:
拿到这种题,首先想怎么用最暴力的方法解决这个问题,于是自然而然的想出来枚举的方法,即利用二重循环枚举所有可能的区间,接着再这区间中找出最小的值,然后用(最小值 * 区间宽度)求出每个区间的最大值,最后从这些最大值中找出最大解。
这种解法的时间复杂度是O(n^3),一般都会超时的,那么我们就会想着降低时间复杂度,即去冗余的方法(冗余分为重复计算和不需要计算两种)
第二阶段:
那么哪里存在冗余呢?第一个想到的应该是区间内求最小值时存在重复计算,我们可以使用空间换时间的方法将之前算过的最小值存储下来,这样求最小值[i][j] 就等于MIN( 最小值[i][j-1] , j) ,这样我们就时间复杂度降低到了O(n^2)
第三阶段:
通过推演又进一步发现了冗余的地方,比方说对于[9, 8, 10, 3, 12, 11,15]来说,虽然我们枚举了所有可能的区间,计算了其区间内的最小值,但你有没有发现,其中大多数的最小值都是 3, 那么我们能不能改变思路减少该冗余呢?
于是乎我们可以采用枚举最小值的算法,即假设每一个点都是最小值,然后我们计算出其作为最小值可以向左右两边延伸的最大区间(如果该点左边的点值大于该点,则继续往左比较,知道某点比该点值小为止)
最后可以算出每一个点作为最小值所包括的最大面积。面积 = n点高度 * (n右边界 - n左边界 + 1 )
第四阶段:
上一阶段的时间复杂度似乎并没有减少,那么肯定这种新思路引来了新的冗余,这种冗余在哪里呢?
我们发现在找一个点的左右最大区间时存在重复计算,因为如果n点比n - 1点的值大的话,那么n点左边界应该大于等于n - 1点的左边界,于是乎我们可以存储下每个点的左右边界,避免很多重复计算
最终思路:
- 枚举所有点,将其作为最小值
- 记录每个点的左右边界(计算n点左边界的方法是:判断n是否比n - 1小,如果成立则跳到n - 1 点的左边界x, 比较n是否比x小,如此循环,知道求出左边界)
- 枚举每一个点的最大面积,计算最大解
完整代码
public class Solution {
public int largestRectangleArea(int[] heights) {
int n = heights.length;
if (n == 0) {
return 0;
}
// 求左边的边界
int[] left = new int[n];
left[0] = 0;
for (int i=1;i<n;++i) {
int A = i;
while (A > 0 && heights[A - 1] >= heights[i]) {
A = left[A - 1];
}
left[i] = A;
}
// 求右边的边界
int[] right = new int[n];
right[n - 1] = n - 1;
for (int i=n-2;i>=0;--i) {
int A = i;
while (A < n - 1 && heights[A + 1] >= heights[i]) {
A = right[A + 1];
}
right[i] = A;
}
// 枚举每一个最小值的最大面积
int ans = 0;
for (int i=0;i<n;++i) {
ans = Math.max(ans, heights[i] * (right[i] - left[i] + 1));
}
return ans;
}
}
LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形的更多相关文章
- [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [leetcode]84. Largest Rectangle in Histogram直方图中的最大矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- LeetCode 84. Largest Rectangle in Histogram 单调栈应用
LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...
- 【LeetCode】84. Largest Rectangle in Histogram——直方图最大面积
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- leetCode 84.Largest Rectangle in Histogram (最大矩形直方图) 解题思路和方法
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [leetcode]84.Largest Rectangle in Histogram ,O(n)解法剖析
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [LeetCode#84]Largest Rectangle in Histogram
Problem: Given n non-negative integers representing the histogram's bar height where the width of ea ...
- 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...
- 84. Largest Rectangle in Histogram
https://www.cnblogs.com/grandyang/p/4322653.html 1.存储一个单调递增的栈 2.如果你不加一个0进去,[1]这种情况就会输出结果0,而不是1 3.单调递 ...
随机推荐
- SQL server 数据库——数学函数、字符串函数、转换函数、时间日期函数
数学函数.字符串函数.转换函数.时间日期函数 1.数学函数 ceiling()--取上限 select ceiling(oil) as 油耗上限 from car floor()--取下限 sele ...
- 1787: [Ahoi2008]Meet 紧急集合
1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1482 Solved: 652[Submit][ ...
- 1755: [Usaco2005 qua]Bank Interest
1755: [Usaco2005 qua]Bank Interest Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 187 Solved: 162[Su ...
- 手把手教你做个AR涂涂乐
前段时间公司有一个AR涂涂乐的项目,虽然之前接触过AR也写过小Demo,但是没有完整开发过AR项目.不过经过1个多星期的学习,现在已经把项目相关的技术都学会了,在此向互联网上那些乐于分享的程序员前辈们 ...
- 一些关于Canny边缘检测算法的改进
传统的Canny边缘检测算法是一种有效而又相对简单的算法,可以得到很好的结果(可以参考上一篇Canny边缘检测算法的实现).但是Canny算法本身也有一些缺陷,可以有改进的地方. 1. Canny边缘 ...
- yii中调整ActiveForm表单样式
Yii2中对于表单和字段的支持组件为ActiveForm和ActiveField, <?php $form = ActiveForm::begin([ 'id' => 'login-for ...
- winow7安装django 1.9.1
1.下载django https://www.djangoproject.com/download/ 2.解压,并到该目录下 执行 python setup.py install 3.验证是否安装成功 ...
- MySQL---事务知识,你搞明白没有?
MySQL - 事务 在学习事务这一概念前,我们需要需要构思一个场景 场景构思 假设该场景发生于一个银行转账背景下,月中,又到了发工资的日子.潭州教育科技集团打算给Tuple老师发放一个月的工资.(此 ...
- CI框架剖析一
CodeIgniter 是一个小巧但功能强大的 PHP 框架,作为一个简单而"优雅"的工具包,它可以为开发者们建立功能完善的 Web 应用程序.本人使用CI框架有一 ...
- 【Android 系统开发】CyanogenMod 13.0 源码下载 编译 ROM 制作 ( 手机平台 : 小米4 | 编译平台 : Ubuntu 14.04 LTS 虚拟机)
分类: Android 系统开发(5) 作者同类文章X 版权声明:本文为博主原创文章 ...

