环境搭建

  1. Github上下载Dubbo最新发布版本,楼主下载版本为2.5.7。
  2. cd到源码解压目录,maven编译,命令为:
mvn clean install -Dmaven.test.skip
  1. 生成Intellij idea相关配置文件,命令为:
mvn idea:idea
  1. 双击运行生成的dubbo-parent.ipr文件

Java SPI

SPI是Service Provider Interfaces的简称,是Java中定义的一个很重要的规范,SPI使得应用之间变得更灵活、程序间更解耦。

一般在应用中会定义一个接口,具体的实现由对应的实现类去完成,即服务提供者(Service Provider)。模块与模块之间基于接口编程,模块之间不能对实现类进行硬编码、不能在代码里写具体的实现类,否则就违反了“可插拔原则”,如果要替换一种实现,就需要修改代码。此时,SPI提供了一种服务发现机制,完美解决了这个问题。

SPI机制基本思路是通过JDK提供的java.util.ServiceLoader类去主动发现服务,不需要硬编码具体的类。

当服务接口有多个实现类(即服务提供者)时,在jar包的META-INF/services/目录下创建一个以服务接口命名的文件,文件内容是该服务接口的具体实现类的全类名,一行记录是一个实现类的全类名。当外部程序装配这个模块时,通过jar包的META-INF/services/目录里的配置文件就可以找到具体的实现类名,从而进行实例化、完成模块的注入。

Java SPI 示例

定义服务接口:

package jdkspi;

public interface WorkerService {
void work();
}

该服务接口的两个实现类如下:

package jdkspi.impl;

import jdkspi.WorkerService;

public class WorkerServiceA implements WorkerService {

    public void work() {
System.out.println("work hard ......");
}
}
package jdkspi.impl;

import jdkspi.WorkerService;

public class WorkerServiceB implements WorkerService {

    public void work() {
System.out.println("work lazy ......");
}
}

在resources下新建目录META-INF/services/,在目录下新建文件。文件名为服务接口全名jdkspi.WorkerService,具体内容如下

jdkspi.impl.WorkerServiceA      //服务接口实现类全名
jdkspi.impl.WorkerServiceB //服务接口实现类全名

测试示例执行入口:

package jdkspi;

import java.util.Iterator;
import java.util.ServiceLoader; public class Test { public static void main(String[] args) {
ServiceLoader<WorkerService> serviceLoader = ServiceLoader.load(WorkerService.class);
WorkerService service = null;
Iterator<WorkerService> iterator = serviceLoader.iterator(); while (iterator.hasNext()) {
service = iterator.next();
service.work();
}
}
}

执行测试示例后,结果如下:

work hard ......
work lazy ...... Process finished with exit code 0

ServiceLoader源码分析

ServiceLoader是一个final类,不能被继承,实现了Iterable接口,可以遍历,如下:

public final class ServiceLoader<S> implements Iterable<S>

ServiceLoader属性如下:

    private static final String PREFIX = "META-INF/services/";

    // The class or interface representing the service being loaded
private final Class<S> service; // The class loader used to locate, load, and instantiate providers
private final ClassLoader loader; // The access control context taken when the ServiceLoader is created
private final AccessControlContext acc; // Cached providers, in instantiation order
private LinkedHashMap<String,S> providers = new LinkedHashMap<>(); // The current lazy-lookup iterator
private LazyIterator lookupIterator;
  • PREFIX: 定义了配置文件的路径,是一个final类型常量,不能设置不能更改。表面Java SPI配置文件默认放在META-INF/services/路径下
  • service: 定义服务接口类,final类型变量,一旦被赋值便不能修改,由load方法传入
  • loader: 类加载器,一旦被赋值便不能修改
  • acc: 访问控制上下文,一旦被赋值比昂不修改
  • providers: 存储服务提供者,也即具体实现类。存储的顺序为配置文件中实现类的排列先后顺序
  • lookupIterator: 迭代器,实现延迟加载的效果

ServiceLoader只有一个构造器,且是内部构造器。不能再外部直接通过new命令创建实例对象。如下:

    private ServiceLoader(Class<S> svc, ClassLoader cl) {
service = Objects.requireNonNull(svc, "Service interface cannot be null");
loader = (cl == null) ? ClassLoader.getSystemClassLoader() : cl;
acc = (System.getSecurityManager() != null) ? AccessController.getContext() : null;
reload();
}

ServiceLoader提供了三种静态类方法来创建实例对象。如下:

    public static <S> ServiceLoader<S> load(Class<S> service, ClassLoader loader) {
return new ServiceLoader<>(service, loader);
} public static <S> ServiceLoader<S> load(Class<S> service) {
ClassLoader cl = Thread.currentThread().getContextClassLoader();
return ServiceLoader.load(service, cl);
} public static <S> ServiceLoader<S> loadInstalled(Class<S> service) {
ClassLoader cl = ClassLoader.getSystemClassLoader();
ClassLoader prev = null;
while (cl != null) {
prev = cl;
cl = cl.getParent();
}
return ServiceLoader.load(service, prev);
}
  • load(Class<S> service): 利用当前线程持有的ClassLoader创建实例
  • load(Class<S> service, ClassLoader loader): 利用指定的ClassLoader创建实例
  • loadInstalled(Class<S> service): 利用系统顶级ClassLoader创建实例

ServiceLoader提供iterator()方法用以生成迭代器。迭代器中方法内部具体由lookupIterator实现。如下:

    public Iterator<S> iterator() {
return new Iterator<S>() { Iterator<Map.Entry<String,S>> knownProviders
= providers.entrySet().iterator(); public boolean hasNext() {
if (knownProviders.hasNext())
return true;
return lookupIterator.hasNext();
} public S next() {
if (knownProviders.hasNext())
return knownProviders.next().getValue();
return lookupIterator.next();
} public void remove() {
throw new UnsupportedOperationException();
} };
}

lookupIterator是LazyIterator的对象实例,LazyIterator是一个内部类,实现了Iterator接口,源码如下:

    private class LazyIterator
implements Iterator<S>
{ Class<S> service;
ClassLoader loader;
Enumeration<URL> configs = null;
Iterator<String> pending = null;
String nextName = null; private LazyIterator(Class<S> service, ClassLoader loader) {
this.service = service;
this.loader = loader;
} private boolean hasNextService() {
if (nextName != null) {
return true;
}
if (configs == null) {
try {
String fullName = PREFIX + service.getName();
if (loader == null)
configs = ClassLoader.getSystemResources(fullName);
else
configs = loader.getResources(fullName);
} catch (IOException x) {
fail(service, "Error locating configuration files", x);
}
}
while ((pending == null) || !pending.hasNext()) {
if (!configs.hasMoreElements()) {
return false;
}
pending = parse(service, configs.nextElement());
}
nextName = pending.next();
return true;
} private S nextService() {
if (!hasNextService())
throw new NoSuchElementException();
String cn = nextName;
nextName = null;
Class<?> c = null;
try {
c = Class.forName(cn, false, loader);
} catch (ClassNotFoundException x) {
fail(service,
"Provider " + cn + " not found");
}
if (!service.isAssignableFrom(c)) {
fail(service,
"Provider " + cn + " not a subtype");
}
try {
S p = service.cast(c.newInstance());
providers.put(cn, p);
return p;
} catch (Throwable x) {
fail(service,
"Provider " + cn + " could not be instantiated",
x);
}
throw new Error(); // This cannot happen
} public boolean hasNext() {
if (acc == null) {
return hasNextService();
} else {
PrivilegedAction<Boolean> action = new PrivilegedAction<Boolean>() {
public Boolean run() { return hasNextService(); }
};
return AccessController.doPrivileged(action, acc);
}
} public S next() {
if (acc == null) {
return nextService();
} else {
PrivilegedAction<S> action = new PrivilegedAction<S>() {
public S run() { return nextService(); }
};
return AccessController.doPrivileged(action, acc);
}
} public void remove() {
throw new UnsupportedOperationException();
} }

从上面源码中,不难发现:服务提供者的实例化过程是在具体调用时进行的,延迟加载。

Java SPI机制的ServiceLoader缺点:

  1. 每次获取一个实现类都必须遍历加载所有的实现类,即使是不想使用的实现类也加载了,造成了资源的浪费。
  2. 不能定向获取对应的实现类,必须iterator遍历查找,比较慢

Dubbo拓展机制

Dubbo拓展机制应用的就是Java SPI的思想。Java SPI配置文件中一条记录是一个实现类全名,但Dubbo配置文件中存储的是key-value键值对,value存储的是实现类全名。示例如下:

ls=com.alibaba.dubbo.rpc.protocol.dubbo.telnet.ListTelnetHandler
ps=com.alibaba.dubbo.rpc.protocol.dubbo.telnet.PortTelnetHandler
cd=com.alibaba.dubbo.rpc.protocol.dubbo.telnet.ChangeTelnetHandler
pwd=com.alibaba.dubbo.rpc.protocol.dubbo.telnet.CurrentTelnetHandler
invoke=com.alibaba.dubbo.rpc.protocol.dubbo.telnet.InvokeTelnetHandler
trace=com.alibaba.dubbo.rpc.protocol.dubbo.telnet.TraceTelnetHandler
count=com.alibaba.dubbo.rpc.protocol.dubbo.telnet.CountTelnetHandler

类似Java SPI机制的ServiceLoader,Dubbo中也有一个拓展加载器ExtensionLoader。ExtensionLoader中定义了配置文件的存储路径:

    private static final String SERVICES_DIRECTORY = "META-INF/services/";

    private static final String DUBBO_DIRECTORY = "META-INF/dubbo/";

    private static final String DUBBO_INTERNAL_DIRECTORY = DUBBO_DIRECTORY + "internal/";

ExtensionLoader构造器也是内部构造器,在外部不能直接通过new命令来创建对象实例:

    private ExtensionLoader(Class<?> type) {
this.type = type;
objectFactory = (type == ExtensionFactory.class ? null : ExtensionLoader.getExtensionLoader(ExtensionFactory.class).getAdaptiveExtension());
}

同样,ExtensionLoader提供静态类方法getExtensionLoader来生成实例:

    public static <T> ExtensionLoader<T> getExtensionLoader(Class<T> type) {
if (type == null)
throw new IllegalArgumentException("Extension type == null");
if (!type.isInterface()) {
throw new IllegalArgumentException("Extension type(" + type + ") is not interface!");
}
if (!withExtensionAnnotation(type)) {
throw new IllegalArgumentException("Extension type(" + type +
") is not extension, because WITHOUT @" + SPI.class.getSimpleName() + " Annotation!");
} ExtensionLoader<T> loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type);
if (loader == null) {
EXTENSION_LOADERS.putIfAbsent(type, new ExtensionLoader<T>(type));
loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type);
}
return loader;
}

调用getExtension方法可以根据name值获取指定的拓展实现类,实例化后的拓展实现类以Holder类封装存储在cachedInstances中,cachedInstances是ConcurrentMap<String, Holder<Object>>变量。

    /**
* 返回指定名字的扩展。如果指定名字的扩展不存在,则抛异常 {@link IllegalStateException}.
*
* @param name
* @return
*/
@SuppressWarnings("unchecked")
public T getExtension(String name) {
if (name == null || name.length() == 0)
throw new IllegalArgumentException("Extension name == null");
if ("true".equals(name)) {
return getDefaultExtension();
}
Holder<Object> holder = cachedInstances.get(name);
if (holder == null) {
cachedInstances.putIfAbsent(name, new Holder<Object>());
holder = cachedInstances.get(name);
}
Object instance = holder.get();
if (instance == null) {
synchronized (holder) {
instance = holder.get();
if (instance == null) {
instance = createExtension(name);
holder.set(instance);
}
}
}
return (T) instance;
}

getExtension方法中采用了double-check机制,拓展实现类的实例化是在createExtension方法中完成的:

    private T createExtension(String name) {
Class<?> clazz = getExtensionClasses().get(name);
if (clazz == null) {
throw findException(name);
}
try {
T instance = (T) EXTENSION_INSTANCES.get(clazz);
if (instance == null) {
EXTENSION_INSTANCES.putIfAbsent(clazz, (T) clazz.newInstance());
instance = (T) EXTENSION_INSTANCES.get(clazz);
}
injectExtension(instance);
Set<Class<?>> wrapperClasses = cachedWrapperClasses;
if (wrapperClasses != null && wrapperClasses.size() > 0) {
for (Class<?> wrapperClass : wrapperClasses) {
instance = injectExtension((T) wrapperClass.getConstructor(type).newInstance(instance));
}
}
return instance;
} catch (Throwable t) {
throw new IllegalStateException("Extension instance(name: " + name + ", class: " +
type + ") could not be instantiated: " + t.getMessage(), t);
}
}

方法实现大体流程为:

  1. name作为key值,获取对应的class。在getExtensionClasses中是有做同步处理的
  2. 根据得到的class创建实例
  3. 对实例化对象进行依赖注入
  4. 对依赖注入后的实例化对象进行包装

依赖注入及包装源码如下:

    private T injectExtension(T instance) {
try {
if (objectFactory != null) {
for (Method method : instance.getClass().getMethods()) {
if (method.getName().startsWith("set")
&& method.getParameterTypes().length == 1
&& Modifier.isPublic(method.getModifiers())) {
Class<?> pt = method.getParameterTypes()[0];
try {
String property = method.getName().length() > 3 ? method.getName().substring(3, 4).toLowerCase() + method.getName().substring(4) : "";
Object object = objectFactory.getExtension(pt, property);
if (object != null) {
method.invoke(instance, object);
}
} catch (Exception e) {
logger.error("fail to inject via method " + method.getName()
+ " of interface " + type.getName() + ": " + e.getMessage(), e);
}
}
}
}
} catch (Exception e) {
logger.error(e.getMessage(), e);
}
return instance;
}

此即是Dubbo拓展机制的大体流程,跟Java SPI机制非常类似,可看作Java SPI机制的一个优化与拓展。下一节将探讨provider服务的发布过程

Dubbo源码学习--环境搭建及基础准备(ServiceLoader、ExtensionLoader)的更多相关文章

  1. Tomcat源码学习 - 环境搭建

    一. 源码下载 PS: 多图预警 在开始阅读源码之前,我们需要先构建一个环境,这样才能便于我们对源码进行调试,具体源码我们可以到官网进行下载(这里我以8.5.63版本为例). 二. 项目导入 下载并解 ...

  2. Java之美[从菜鸟到高手演变]之Spring源码学习 - 环境搭建

    准备工作 1.下载安装STS(Spring Tool Suite),在eclipse market里直接搜索.下载.安装.2.下载安装gradle, Spring源码使用gradle构建,下载后解压到 ...

  3. Hadoop学习笔记(10) ——搭建源码学习环境

    Hadoop学习笔记(10) ——搭建源码学习环境 上一章中,我们对整个hadoop的目录及源码目录有了一个初步的了解,接下来计划深入学习一下这头神象作品了.但是看代码用什么,难不成gedit?,单步 ...

  4. 在IDEA中搭建Java源码学习环境并上传到GitHub上

    打开IDEA新建一个项目 创建一个最简单的Java项目即可 在项目命名填写该项目的名称,我这里写的项目名为Java_Source_Study 点击Finished,然后在项目的src目录下新建源码文件 ...

  5. Dubbo源码学习--注册中心分析

    相关文章: Dubbo源码学习--服务是如何发布的 Dubbo源码学习--服务是如何引用的 注册中心 关于注册中心,Dubbo提供了多个实现方式,有比较成熟的使用zookeeper 和 redis 的 ...

  6. Dubbo源码学习--优雅停机原理及在SpringBoot中遇到的问题

    Dubbo源码学习--优雅停机原理及在SpringBoot中遇到的问题 相关文章: Dubbo源码学习文章目录 前言 主要是前一阵子换了工作,第一个任务就是解决目前团队在 Dubbo 停机时产生的问题 ...

  7. Hadoop源码阅读环境搭建(IDEA)

    拿到一份Hadoop源码之后,经常关注的两件事情就是 1.怎么阅读?涉及IDEA和Eclipse工程搭建.IDEA搭建,选择源码,逐步导入即可:Eclipse可以选择后台生成工程,也可以选择IDE导入 ...

  8. Spark源码分析环境搭建

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3868718.html 本文主要分享一下如何构建Spark源码分析环境.以前主要使用eclipse来阅读源 ...

  9. 【转】Linux(ubuntu14.04)上编译Android4.4源码的环境搭建及编译全过程

    原文网址:http://jileniao.net/linux-android-building.html sublime text让我伤心.本来很信任sublime text的自动保存功能,之前使用一 ...

随机推荐

  1. Python面试题之python是一种什么语言及优缺点

    1.说说python是一种什么语言? 参考答案:python是一门动态解释性的强类型定义语言 编译型vs解释型 编译型优点:编译器一般会有预编译的过程对代码进行优化.因为编译只做一次,运行时不需要编译 ...

  2. ZOJ-3933-Team Formation【二分图最佳匹配】【KM】

    http://blog.csdn.net/loy_184548/article/details/51154195    一开始对不同组合得不同分数(mm1,mg2,gg3),想用sap来写,但是保证了 ...

  3. dom4j之小小工具

    dom4j经常不用,方法忘了又记,故做出读取xml和把document写入xml的小小工具~~~ /** * 读取document和将document对象写入到xml的小工具 * 使用该类必须给出do ...

  4. 2017年十大奇葩画风的H5页面案例,原来脑洞可以这样大

    每个人都是视觉动物,画面精美.体验奇特的H5,用户在内心一般都会满分打出,毫不吝啬,同时也毫不犹豫分享,因为此时的分享不掉价儿~ 今天给大家准备了十支H5,画风超级奇特,非常值得一看所有案例均可在19 ...

  5. python3中判断字串类型

    s为字串 s.isalnum() #所有字符都是数字或者字母,为真返回 Ture,否则返回 False. s.isalpha() #所有字符都是字母,为真返回 Ture,否则返回 False. s.i ...

  6. python第三课

    本节内容 1.列表 2.购物车设计思路 3.字典 1.列表 不可变类型:整型.字符串.元组tuple 可变类型:列表list.字典dict 2.购物车 3.字典

  7. HDFS 简介

    hadoop分别从3个角度将主机划分为2种角色 最基本的是Master 和 从HDFS角度,将主机划分为namenode和datanode,在分布式文件系统中,目录管理很重要,管理目录相当于主人 从m ...

  8. Python 使用正则表达式

    当使用正则表达式时,re 模块内部会干两件事情 1.编译正则表达式,如其字串本身不合法,报错 2.用编译后的正则表达式去匹配字符串 re_telephone = re.compile(r'^(\d{3 ...

  9. sql里的null和空的区别

    null表示为未知,未定义: 空表示为空白,或者0: sql查询,排序时null在''的前面: 定义字段为not null,写为空可以写入: null不可以用来比较,只能用is null判断:

  10. Java基础笔记4

    数组 有一组相同数据类型的数据. 数据类型[] 数组名称=new 数据类型[长度]; //为该数组开辟空间. 数据类型[] 数组名称={值,值}; 求数组的长度 数组名称.length; 获取数组中的 ...