hdu4597 Play Game 区间DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4597
全国邀请赛通化赛区第8题--题目重现
思路:
区间DP的思想,想法是队友想出来的,感觉很秒,自己处理的边界,果断AC
边界处理很重要!!
对于两列牌。我们定义f[x][y][k][h]表示对于当前状态中第一列牌处于区间(i,j),第二列牌处于区间(k,h)时,先手(即当前要选择牌的选手)和后手之间的最大差值
定义sum1[x][y][k][h]表示先手的在此区间的获得的分数的最大值,sum2[x][y][k][h]表示后手在此区间的获得的分数的最大值
那么如果对于当前的区间,当前的选手选择y位置的牌,那么f[x][y][k][h]=(sum1[x][y-1][k][h]+a[y]-sum2[x][y-1][k][h]);
又很容易知道sum1[x][y-1][k][h]-sum2[x][y-1][k][h]=-f[x][y-1][k][h];
为什么是负的呢??很简单,因为上一次的先手是对方啊
同理,也可以选择x,k,h位置的牌
那么我们最终可以得到这样一个简单的DP转移方程
f[x][y][k][h]=max(-dfs(x,y-1,k,h)+a[y],-dfs(x+1,y,k,h)+a[x],-dfs(x,y,k+1,h)+b[k],-dfs(x,y,k,h-1)+b[h]);
状态方程有了,实现的时候最重要的就是边界处理了。
我用的是记忆化搜索的方式
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include<iostream>
using namespace std;
#define N 22
#define INF 999999999
int f[N][N][N][N], a[N], b[N], sum[][N];
bool vis[N][N][N][N];
int n;
int dfs(int i, int j, int k , int h)
{
int &x = f[i][j][k][h];
if(vis[i][j][k][h]) return x;
vis[i][j][k][h] = true;
x=-INF;
if(k==&&h==&&i==&&j==) return x=;
else
if(k==&&h== && i==j) return x=a[i];
else
if(i==&&j== && k==h) return x=b[k];
else
if(k==&&h==) x=max(max(-dfs(i+,j,,)+a[i],-dfs(i,j-,,)+a[j]),x);
else
if(i==&&j==) x=max(max(-dfs(,,k+,h)+b[k],-dfs(,,k,h-)+b[h]),x);
else
if(i==j && k!=h) x=max(max(max(-dfs(,,k,h)+a[i],-dfs(i,j,k+,h)+b[k]),-dfs(i,j,k,h-)+b[h]),x);
else
if(k==h && i!=j) x=max(max(max(-dfs(i,j,,)+b[k],-dfs(i+,j,k,h)+a[i]),-dfs(i,j-,k,h)+a[j]),x);
else
if(i==j&& k==h) x=max(x,max(-dfs(,,k,h)+a[i],-dfs(i,j,,)+b[k]));
else
{
x= max(x, max(-dfs(i, j-, k, h) + a[j], -dfs(i+, j, k, h) + a[i]));
x = max(x, max(-dfs(i, j, k, h-) + b[h], -dfs(i, j, k+, h) + b[k]));
} return x;
}
int main()
{
int cases;
scanf("%d", &cases);
while(cases--) {
scanf("%d", &n);
int sum=;
for(int i = ; i <= n; i++) scanf("%d", &a[i]),sum+=a[i];
for(int i = ; i <= n; i++) scanf("%d", &b[i]),sum+=b[i];
memset(vis, false, sizeof(vis));
int res = dfs(, n, , n);
cout<<(sum+res)/<<endl;
}
return ;
}
hdu4597 Play Game 区间DP的更多相关文章
- hdu4597 区间dp
//Accepted 1784 KB 78 ms //区间dp //dp[l1][r1][l2][r2] 表示a数列从l1到r1,b数列从l2到r2能得到的最大分值 // #include <c ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- 区间dp总结篇
前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...
随机推荐
- linux 私房菜 CH8 linux 磁盘与文件系统管理
索引式文件系统 superblock 记录此系统的整体信息,包括 inode/block 的总量.使用量.剩余量,以及文件系统的格式与相关信息等: inode 记录档案的属性,一个档案占用一个 ino ...
- SharePoint 配置传出电子邮件设置
1. 环境参数说明 A) Windows Server 2012 R2 B) SharePoint 2016 C) 第三方邮件服务器(smtp.3th.com - 有负载均衡,即对应多个IP服务器) ...
- git工具使用方法及常用命令
git下载地址:https://git-for-windows.github.io/git环境变量配置:增加:GIT_HOME = C:\Git (文件夹为git软件的安装文件夹)Path添加: %G ...
- Linux简介与厂商版本下
2. Linux的厂商版本 在Linux内核基础上,我们还有许多厂商版本.即使有了内核和GNU软件,Linux的安装和编译并不是简单的工作,Linux厂商就是瞄准了这个市场.这些厂商会在Linux内核 ...
- Hibernate基础学习(二)—Hibernate相关API介绍
一.Hibernate的核心接口 所有的Hibernate应用中都会访问Hibernate的5个核心接口. (1)Configuration接口: 配置Hibernate,启动Hi ...
- Android 瘦身之道 ---- so文件
Android 瘦身之道 ---- so文件 [TOC] 1. 前言 目前Android 瘦身只有几个方面可以入手,因为apk的结构就已经固定了. res 目录下的资源文件.(通常是压缩图片,比如 矢 ...
- Angular2入门-数据绑定
▓▓▓▓▓▓ 大致介绍 Angular2中数据绑定的方式默认是以单向方式,数据绑定的方式可以分为: 1.属性绑定和插值表达式 组件类-> 模板 2.事件绑定:模板 -> 组件类 3.双向绑 ...
- 插入排序的优化非希尔【不靠谱地讲可以优化到O(nlogn)】 USACO 丑数
首先我们先介绍一下普通的插排,就是我们现在一般写的那种,效率是O(n^2)的. 普通的插排基于的思想就是找位置,然后插入进去,其他在它后面的元素全部后移,下面是普通插排的代码: #include< ...
- linux环境下 mysql数据库忘记密码 处理办法UPDATE user SET Password = password ( 'new-password' ) WHERE User = 'root' ;
整个修改过程大概3-10分钟(看个人操作),这个时间内mysql出于不需要密码就能登陆的状态,请设法保证系统安全 不罗嗦直接上步骤 1.vi /etc/my.cnf 在[mysqld]下,添加一句:s ...
- ios 关于时间戳与时间转化的笔记
linux系统获取时间戳的方法:time() ; 时间戳转换成需要的时间格式: NSDateFormatter *formatter=[[NSDateFormatter alloc]init]; [f ...