https://code.google.com/codejam/contest/3274486/dashboard

Problem

The kitchen at the Infinite House of Pancakes has just received an order for a stack of K pancakes! The chef currently has N pancakes available, where N ≥ K. Each pancake is a cylinder, and different pancakes may have different radii and heights.

As the sous-chef, you must choose K out of the N available pancakes, discard the others, and arrange those K pancakes in a stack on a plate as follows. First, take the pancake that has the largest radius, and lay it on the plate on one of its circular faces. (If multiple pancakes have the same radius, you can use any of them.) Then, take the remaining pancake with the next largest radius and lay it on top of that pancake, and so on, until all K pancakes are in the stack and the centers of the circular faces are aligned in a line perpendicular to the plate, as illustrated by this example:

A stack of pancakes with varying radii and thicknesses, obeying the rules in the statement.

You know that there is only one thing your diners love as much as they love pancakes: syrup! It is best to maximize the total amount of exposed pancake surface area in the stack, since more exposed pancake surface area means more places to pour on delicious syrup. Any part of a pancake that is not touching part of another pancake or the plate is considered to be exposed.

If you choose the K pancakes optimally, what is the largest total exposed pancake surface area you can achieve?

Input

The first line of the input gives the number of test cases, T. T test cases follow. Each begins with one line with two integers N and K: the total number of available pancakes, and the size of the stack that the diner has ordered. Then, N more lines follow. Each contains two integers Ri and Hi: the radius and height of the i-th pancake, in millimeters.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the maximum possible total exposed pancake surface area, in millimeters squared. y will be considered correct if it is within an absolute or relative error of 10-6 of the correct answer. See the FAQ for an explanation of what that means, and what formats of real numbers we accept.

Limits

1 ≤ T ≤ 100.
1 ≤ K ≤ N.
1 ≤ Ri ≤ 106, for all i.
1 ≤ Hi ≤ 106, for all i.

Small dataset
1 ≤ N ≤ 10.

Large dataset
1 ≤ N ≤ 1000.

Sample

Input

4
2 1
100 20
200 10
2 2
100 20
200 10
3 2
100 10
100 10
100 10
4 2
9 3
7 1
10 1
8 4

Output

Case #1: 138230.076757951
Case #2: 150796.447372310
Case #3: 43982.297150257
Case #4: 625.176938064

In Sample Case #1, the “stack” consists only of one pancake. A stack of just the first pancake would have an exposed area of π × R02 + 2 × π * R0 × H0 = 14000π mm2. A stack of just the second pancake would have an exposed area of 44000π mm2. So it is better to use the second pancake.

In Sample Case #2, we can use both of the same pancakes from case #1. The first pancake contributes its top area and its side, for a total of 14000π mm2. The second pancake contributes some of its top area (the part not covered by the first pancake) and its side, for a total of 34000π mm2. The combined exposed surface area is 48000π mm2.

In Sample Case #3, all of the pancakes have radius 100 and height 10. If we stack two of these together, we effectively have a single new cylinder of radius 100 and height 20. The exposed surface area is 14000π mm2.

In Sample Case #4, the optimal stack uses the pancakes with radii of 8 and 9.

Key

可以用DP做。对DP还是不太熟练,一开始没排序,于是考虑的情况就多一些,总有小规模案例不正确,偏小。后来排个序考虑起来就方便多了。时间复杂度O(n2)。难倒是不难,之前没Debug出来才是最气的。时间复杂度O(n2)。

其实贪心就可以了,同学贪心做的但是时间复杂度也要O(n2),就是少很多赋值。

Code

#include<iostream>
#include<iomanip>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lld; const int maxn = 1000 + 10;
const long double pi = 3.1415926535897932; int T, N, K;
struct RH { lld R, H, A; } arr[maxn];
lld dp[maxn]; bool cmp(RH &a, RH &b) {
if (a.R == b.R) return a.H > b.H;
return a.R > b.R;
} int main()
{
//freopen("A-small-practice.in", "r", stdin);
//freopen("A-small-practice.out", "w", stdout);
ios::sync_with_stdio(false);
cin >> T;
for (int now_case = 1; now_case <= T; ++now_case) {
cin >> N >> K;
for (int i = 0; i < N; ++i) {
cin >> arr[i].R >> arr[i].H;
arr[i].A = arr[i].R * arr[i].H * 2;
arr[i].R *= arr[i].R;
}
sort(arr, arr + N, cmp);
memset(dp, 0, sizeof(dp));
for (int i = 0; i < N; ++i) {
for (int j = K; j > 1; --j) {
if (dp[j - 1] == 0) continue;
lld tmp = dp[j - 1] + arr[i].A;
if (dp[j] < tmp) dp[j] = tmp;
}
lld tmp = arr[i].A + arr[i].R;
if (dp[1] < tmp) dp[1] = tmp;
}
cout << "Case #" << now_case << ": " << fixed << setprecision(9) << ((long double)dp[K] * pi) << endl;
}
return 0;
}

[刷题]Google Code Jam 2017 - Round1 C Problem A. Ample Syrup的更多相关文章

  1. Google Code Jam 2010 Round 1C Problem A. Rope Intranet

    Google Code Jam 2010 Round 1C Problem A. Rope Intranet https://code.google.com/codejam/contest/61910 ...

  2. Google Code Jam 2009 Qualification Round Problem C. Welcome to Code Jam

    本题的 Large dataset 本人尚未解决. https://code.google.com/codejam/contest/90101/dashboard#s=p2 Problem So yo ...

  3. Google Code Jam 2014 资格赛:Problem B. Cookie Clicker Alpha

    Introduction Cookie Clicker is a Javascript game by Orteil, where players click on a picture of a gi ...

  4. Google Code Jam 2010 Round 1C Problem B. Load Testing

    https://code.google.com/codejam/contest/619102/dashboard#s=p1&a=1 Problem Now that you have won ...

  5. Google Code Jam 2014 资格赛:Problem D. Deceitful War

    This problem is the hardest problem to understand in this round. If you are new to Code Jam, you sho ...

  6. dp - Google Code jam Qualification Round 2015 --- Problem B. Infinite House of Pancakes

    Problem B. Infinite House of Pancakes Problem's Link:   https://code.google.com/codejam/contest/6224 ...

  7. Google Code jam Qualification Round 2015 --- Problem A. Standing Ovation

    Problem A. Standing Ovation Problem's Link:   https://code.google.com/codejam/contest/6224486/dashbo ...

  8. Google Code Jam 2010 Round 1A Problem A. Rotate

    https://code.google.com/codejam/contest/544101/dashboard#s=p0     Problem In the exciting game of Jo ...

  9. Google Code Jam 2010 Round 1B Problem B. Picking Up Chicks

    https://code.google.com/codejam/contest/635101/dashboard#s=p1   Problem A flock of chickens are runn ...

随机推荐

  1. 转:java实例化对象的过程

    学习JAVA这门面向对象的语言,实质就是不断地创建类,并把类实例化为对象并调用方法.对于初学JAVA的人总搞清楚对象是如何实例化的,假如类之间存在继承关系,那就更糊涂了.下面我们通过两个例题来说明对象 ...

  2. win32/mfc/qt 异常处理与总结

    际异常一: libcpmtd.lib(xmbtowc.obj) : error LNK2001: unresolved external symbol __CrtDbgReport Debug/B机. ...

  3. Tcl与Design Compiler (十)——其他的时序约束选项(一)

    本文属于原创手打(有参考文献),如果有错,欢迎留言更正:此外,转载请标明出处 http://www.cnblogs.com/IClearner/  ,作者:IC_learner 之前讲了基本的时序路径 ...

  4. jPaginate 一个非常好用的分页插件

    之前报馆项目用的前端框架easyui,还是用不太习惯,因此换了一个框架,最近为此找分页插件,偶然间看见一个非常好用的分页插件JPaginate Paginate是基于jquery的分页插件,非常轻量, ...

  5. WebStorm里启动electron项目

    WebStorm里启动electron项目,其实很简单 一.第一步打开下面的窗口 二.然后输入electron .,然后敲下 回车键,然后等会项目界面就会出现了. PS:electron 和 点之间有 ...

  6. Linux简介与厂商版本下

    2. Linux的厂商版本 在Linux内核基础上,我们还有许多厂商版本.即使有了内核和GNU软件,Linux的安装和编译并不是简单的工作,Linux厂商就是瞄准了这个市场.这些厂商会在Linux内核 ...

  7. 细细探究MySQL Group Replicaiton — 配置维护故障处理全集

             本文主要描述 MySQL Group Replication的简易原理.搭建过程以及故障维护管理内容.由于是新技术,未在生产环境使用过,本文均是虚拟机测试,可能存在考虑不周跟思路有误 ...

  8. Hibernate(四)之对象状态及一级缓存

    一.Hibernate中的对象状态 1.1.瞬时态(临时态) 没有与Hibernate产生关联 与数据库中的记录没有产生关联(有关联就是与数据库中表的id相对应) 获得:一般都只直接创建(new) 瞬 ...

  9. MAT(Memory Analyzer Tool)使用心得

    起因:最近在跟踪产品的性能问题,期间主要问题体现在JVM的内存回收问题,使用MAT工具进行JVM内存分析(也可对android 的应用内存分析) 问题描述: 1.部分后端服务在运行一段时间后会突然年老 ...

  10. jmeter 使用jmeter 录制 手机APP脚本

    1.打开jmeter.鼠标右击工作台.添加HTTP代理服务器 2.设置配置jmeter.手机无线网络.(目标控制器也可以选择加到线程组中) 3.添加查看结果树 4.启动完成后.操作手机.jmeter就 ...