https://code.google.com/codejam/contest/3274486/dashboard

Problem

The kitchen at the Infinite House of Pancakes has just received an order for a stack of K pancakes! The chef currently has N pancakes available, where N ≥ K. Each pancake is a cylinder, and different pancakes may have different radii and heights.

As the sous-chef, you must choose K out of the N available pancakes, discard the others, and arrange those K pancakes in a stack on a plate as follows. First, take the pancake that has the largest radius, and lay it on the plate on one of its circular faces. (If multiple pancakes have the same radius, you can use any of them.) Then, take the remaining pancake with the next largest radius and lay it on top of that pancake, and so on, until all K pancakes are in the stack and the centers of the circular faces are aligned in a line perpendicular to the plate, as illustrated by this example:

A stack of pancakes with varying radii and thicknesses, obeying the rules in the statement.

You know that there is only one thing your diners love as much as they love pancakes: syrup! It is best to maximize the total amount of exposed pancake surface area in the stack, since more exposed pancake surface area means more places to pour on delicious syrup. Any part of a pancake that is not touching part of another pancake or the plate is considered to be exposed.

If you choose the K pancakes optimally, what is the largest total exposed pancake surface area you can achieve?

Input

The first line of the input gives the number of test cases, T. T test cases follow. Each begins with one line with two integers N and K: the total number of available pancakes, and the size of the stack that the diner has ordered. Then, N more lines follow. Each contains two integers Ri and Hi: the radius and height of the i-th pancake, in millimeters.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the maximum possible total exposed pancake surface area, in millimeters squared. y will be considered correct if it is within an absolute or relative error of 10-6 of the correct answer. See the FAQ for an explanation of what that means, and what formats of real numbers we accept.

Limits

1 ≤ T ≤ 100.
1 ≤ K ≤ N.
1 ≤ Ri ≤ 106, for all i.
1 ≤ Hi ≤ 106, for all i.

Small dataset
1 ≤ N ≤ 10.

Large dataset
1 ≤ N ≤ 1000.

Sample

Input

4
2 1
100 20
200 10
2 2
100 20
200 10
3 2
100 10
100 10
100 10
4 2
9 3
7 1
10 1
8 4

Output

Case #1: 138230.076757951
Case #2: 150796.447372310
Case #3: 43982.297150257
Case #4: 625.176938064

In Sample Case #1, the “stack” consists only of one pancake. A stack of just the first pancake would have an exposed area of π × R02 + 2 × π * R0 × H0 = 14000π mm2. A stack of just the second pancake would have an exposed area of 44000π mm2. So it is better to use the second pancake.

In Sample Case #2, we can use both of the same pancakes from case #1. The first pancake contributes its top area and its side, for a total of 14000π mm2. The second pancake contributes some of its top area (the part not covered by the first pancake) and its side, for a total of 34000π mm2. The combined exposed surface area is 48000π mm2.

In Sample Case #3, all of the pancakes have radius 100 and height 10. If we stack two of these together, we effectively have a single new cylinder of radius 100 and height 20. The exposed surface area is 14000π mm2.

In Sample Case #4, the optimal stack uses the pancakes with radii of 8 and 9.

Key

可以用DP做。对DP还是不太熟练,一开始没排序,于是考虑的情况就多一些,总有小规模案例不正确,偏小。后来排个序考虑起来就方便多了。时间复杂度O(n2)。难倒是不难,之前没Debug出来才是最气的。时间复杂度O(n2)。

其实贪心就可以了,同学贪心做的但是时间复杂度也要O(n2),就是少很多赋值。

Code

#include<iostream>
#include<iomanip>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lld; const int maxn = 1000 + 10;
const long double pi = 3.1415926535897932; int T, N, K;
struct RH { lld R, H, A; } arr[maxn];
lld dp[maxn]; bool cmp(RH &a, RH &b) {
if (a.R == b.R) return a.H > b.H;
return a.R > b.R;
} int main()
{
//freopen("A-small-practice.in", "r", stdin);
//freopen("A-small-practice.out", "w", stdout);
ios::sync_with_stdio(false);
cin >> T;
for (int now_case = 1; now_case <= T; ++now_case) {
cin >> N >> K;
for (int i = 0; i < N; ++i) {
cin >> arr[i].R >> arr[i].H;
arr[i].A = arr[i].R * arr[i].H * 2;
arr[i].R *= arr[i].R;
}
sort(arr, arr + N, cmp);
memset(dp, 0, sizeof(dp));
for (int i = 0; i < N; ++i) {
for (int j = K; j > 1; --j) {
if (dp[j - 1] == 0) continue;
lld tmp = dp[j - 1] + arr[i].A;
if (dp[j] < tmp) dp[j] = tmp;
}
lld tmp = arr[i].A + arr[i].R;
if (dp[1] < tmp) dp[1] = tmp;
}
cout << "Case #" << now_case << ": " << fixed << setprecision(9) << ((long double)dp[K] * pi) << endl;
}
return 0;
}

[刷题]Google Code Jam 2017 - Round1 C Problem A. Ample Syrup的更多相关文章

  1. Google Code Jam 2010 Round 1C Problem A. Rope Intranet

    Google Code Jam 2010 Round 1C Problem A. Rope Intranet https://code.google.com/codejam/contest/61910 ...

  2. Google Code Jam 2009 Qualification Round Problem C. Welcome to Code Jam

    本题的 Large dataset 本人尚未解决. https://code.google.com/codejam/contest/90101/dashboard#s=p2 Problem So yo ...

  3. Google Code Jam 2014 资格赛:Problem B. Cookie Clicker Alpha

    Introduction Cookie Clicker is a Javascript game by Orteil, where players click on a picture of a gi ...

  4. Google Code Jam 2010 Round 1C Problem B. Load Testing

    https://code.google.com/codejam/contest/619102/dashboard#s=p1&a=1 Problem Now that you have won ...

  5. Google Code Jam 2014 资格赛:Problem D. Deceitful War

    This problem is the hardest problem to understand in this round. If you are new to Code Jam, you sho ...

  6. dp - Google Code jam Qualification Round 2015 --- Problem B. Infinite House of Pancakes

    Problem B. Infinite House of Pancakes Problem's Link:   https://code.google.com/codejam/contest/6224 ...

  7. Google Code jam Qualification Round 2015 --- Problem A. Standing Ovation

    Problem A. Standing Ovation Problem's Link:   https://code.google.com/codejam/contest/6224486/dashbo ...

  8. Google Code Jam 2010 Round 1A Problem A. Rotate

    https://code.google.com/codejam/contest/544101/dashboard#s=p0     Problem In the exciting game of Jo ...

  9. Google Code Jam 2010 Round 1B Problem B. Picking Up Chicks

    https://code.google.com/codejam/contest/635101/dashboard#s=p1   Problem A flock of chickens are runn ...

随机推荐

  1. 第一章:shiro简介

    1.1 简介 Apache Shiro是java的一个安全框架,相当简单,没有Spring Security功能强大,但是实际工作中大多使用shiro就够了.可以帮助我们完成:认证,授权,加密,会话管 ...

  2. Redis中的master-slave&sentinel

    redis安装 解压完成后可以看到INSTALL和README.md文件,查看以获取更多有用信息. 在README文件中可以获取到软件的安装步骤.以下安装步骤基于此. #step1 进入文件夹,执行编 ...

  3. Ubuntu16.04安装xampp及部署Testlink

    一.从官网下载xampp并安装: https://www.apachefriends.org/zh_cn/index.html chmod +x xampp-linux-x64-5.6.30-0-in ...

  4. 自适应滤波:最小均方误差滤波器(LMS、NLMS)

    作者:桂. 时间:2017-04-02  08:08:31 链接:http://www.cnblogs.com/xingshansi/p/6658203.html 声明:欢迎被转载,不过记得注明出处哦 ...

  5. C# 调用CMD执行命令行

    这几天用c#做了一个项目,其中一个功能是要把生成的临时文件隐藏,同时,不能在屏幕上有调用CMD的痕迹,这里生成的临时文件的绝对路径为delfile为文件的绝对路径, 代码如下: private voi ...

  6. Android 用 camera2 API 自定义相机

    前言 笔者因为项目需要自定义相机,所以了解了一下 Android 关于 camera 这块的 API.Android SDK 21(LOLLIPOP) 开始已经弃用了之前的 Camera 类,提供了 ...

  7. 准备要开始写博客啦~Hello World

    Hello World 新的开始 加油咯 小蚊子~

  8. JavaEE开发之Spring中的条件注解组合注解与元注解

    上篇博客我们详细的聊了<JavaEE开发之Spring中的多线程编程以及任务定时器详解>,本篇博客我们就来聊聊条件注解@Conditional以及组合条件.条件注解说简单点就是根据特定的条 ...

  9. IONIC2新建项目并添加导航

    一.   基础搭建 1.      新建IONIC2项目 ionic start myApp tabs --v2 不加--v2会新建ionic1的项目 2.      运行项目 cd myApp io ...

  10. 跟着刚哥梳理java知识点——面向对象(八)

    面向对象的核心概念:类和对象. 类:对一类事物描述,是抽象的.概念上的定义. 对象:实际存在的该类事物的每个个体,因而也成为实例(Instance). Java类及类的成员:属性(成员变量Field) ...