题目描述

Farmer John has a brilliant idea for the next great spectator sport: Cow Steeplechase! As everyone knows, regular steeplechase involves a group of horses that race around a course filled with obstacles they must jump over. FJ figures the same contest should work with highly-trained cows, as long as the obstacles are made short enough.

In order to design his course, FJ makes a diagram of all the N (1 <= N <= 250) possible obstacles he could potentially build. Each one is represented by a line segment in the 2D plane that is parallel to the horizontal or vertical axis. Obstacle i has distinct endpoints (X1_i, Y1_i) and (X2_i, Y2_i) (1 <= X1_i, Y1_i, X2_i, Y2_i <= 1,000,000,000). An example is as follows:

   --+-------
-----+-----
---+--- |
| | |
--+-----+--+- |
| | | | |
| --+--+--+-+-
| | | |
|

FJ would like to build as many of these obstacles as possible, subject to the constraint that no two of them intersect. Starting with the diagram above, FJ can build 7 obstacles:

   ----------
-----------
------- |
| |
| | |
| | | |
| | | |
| | | |
|

Two segments are said to intersect if they share any point in common, even an endpoint of one or both of the segments. FJ is certain that no two horizontal segments in the original input diagram will intersect, and that similarly no two vertical segments in the input diagram will intersect.

Please help FJ determine the maximum number of obstacles he can build.

给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段。

输入输出格式

输入格式:

* Line 1: A single integer: N.

* Lines 2..N+1: Line i+1 contains four space-separated integers representing an obstacle: X1_i, Y1_i, X2_i, and Y2_i.

输出格式:

* Line 1: The maximum number of non-crossing segments FJ can choose.

输入输出样例

输入样例#1:

3
4 5 10 5
6 2 6 12
8 3 8 5

输出样例#1:

2

Solution

网络流,正难则反,明显可以看出的是,我们可以把交叉的线段之间连边然后就可以求出最大匹配,这也就是我们需要去掉的线段的数目。一道入门题目?然而蒟蒻做了一个小时。。。

Code

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#define re register
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(arr) memset(arr, 0, sizeof(arr))
const int inf = 0x3f3f3f3f;
struct po{
int nxt,to,w;
}edge[200001];
struct point{
int x1,x2,y1,y2,id;
}a[200001];
int head[252],dep[252],s,t,n,m,num=-1,cur[2000001],sum;
inline int read()
{
int x=0,c=1;
char ch=' ';
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
while(ch=='-') c*=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*c;
}
inline void add_edge(int from,int to,int w)
{
edge[++num].nxt=head[from];
edge[num].to=to;
edge[num].w=w;
head[from]=num;
}
inline void add(int from,int to,int w)
{
add_edge(from,to,w);
add_edge(to,from,0);
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
queue<int> q;
while(!q.empty())
q.pop();
q.push(s);
dep[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(re int i=head[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(dep[v]==0&&edge[i].w>0)
{
dep[v]=dep[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
inline int dfs(int u,int dis)
{
if(u==t)
return dis;
int diss=0;
for(re int& i=cur[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(edge[i].w!=0&&dep[v]==dep[u]+1)
{
int check=dfs(v,min(dis,edge[i].w));
if(check!=0)
{
dis-=check;
diss+=check;
edge[i].w-=check;
edge[i^1].w+=check;
if(dis==0) break;
}
}
}
return diss;
}
inline int dinic()
{
int ans=0;
while(bfs())
{
for(re int i=0;i<=n;i++)
cur[i]=head[i];
while(int d=dfs(s,inf))
ans+=d;
}
return ans;
}
int main()
{
memset(head,-1,sizeof(head));
n=read();
s=0;t=n+1;
for(re int i=1;i<=n;i++){
int x1,y1,x2,y2;
x1=read();y1=read();x2=read();y2=read();
if(x1>x2) swap(x1,x2);if(y1>y2) swap(y1,y2);
a[i].x1=x1;a[i].y1=y1;a[i].x2=x2;a[i].y2=y2;
if(a[i].x1==a[i].x2) a[i].id=1;
else a[i].id=2;
}
for(re int i=1;i<=n;i++){
if(a[i].id==1){
int H=a[i].x1;add(s,i,1);
for(re int j=i+1;j<=n;j++){
if(a[j].id==2&&a[j].x1<=H&&a[j].x2>=H&&a[i].y1<=a[j].y1&&a[i].y2>=a[j].y2){
add(i,j,1);
sum++;
}
}
}else {
add(i,t,1);
int L=a[i].y1;
for(re int j=i+1;j<=n;j++){
if(a[j].id==1&&a[j].y1<=L&&a[j].y2>=L&&a[i].x1<=a[j].x1&&a[i].x2>=a[j].x2){
add(j,i,1);
sum++;
}
}
}
}
int d=dinic();
cout<<n-d;
}

牛的障碍Cow Steeplechase的更多相关文章

  1. Luogu P3033 [USACO11NOV]牛的障碍Cow Steeplechase(二分图匹配)

    P3033 [USACO11NOV]牛的障碍Cow Steeplechase 题意 题目描述 --+------- -----+----- ---+--- | | | | --+-----+--+- ...

  2. [USACO11NOV]牛的障碍Cow Steeplechase

    洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...

  3. 洛谷 - P3033 - 牛的障碍Cow Steeplechase - 二分图最大独立集

    https://www.luogu.org/fe/problem/P3033 二分图最大独立集 注意输入的时候控制x1,y1,x2,y2的相对大小. #include<bits/stdc++.h ...

  4. [USACO11NOV]牛的障碍Cow Steeplechase(匈牙利算法)

    洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...

  5. 「USACO11NOV」牛的障碍Cow Steeplechase 解题报告

    题面 横的,竖的线短段,求最多能取几条没有相交的线段? 思路 学过网络流的童鞋在哪里? 是时候重整网络流雄风了! 好吧,废话不多说 这是一道最小割的题目 怎么想呢? 要取最多,那反过来不就是不能取的要 ...

  6. bzoj1648 / P2853 [USACO06DEC]牛的野餐Cow Picnic

    P2853 [USACO06DEC]牛的野餐Cow Picnic 你愿意的话,可以写dj. 然鹅,对一个缺时间的退役选手来说,暴力模拟是一个不错的选择. 让每个奶牛都把图走一遍,显然那些被每个奶牛都走 ...

  7. bzoj1623 / P2909 [USACO08OPEN]牛的车Cow Cars

    P2909 [USACO08OPEN]牛的车Cow Cars 显然的贪心. 按速度从小到大排序.然后找车最少的车道,查询是否能填充进去. #include<iostream> #inclu ...

  8. bzoj1604 / P2906 [USACO08OPEN]牛的街区Cow Neighborhoods

    P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 考虑维护曼哈顿距离:$\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} ...

  9. 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party

    P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...

随机推荐

  1. 【BZOJ4590】[Shoi2015]自动刷题机 二分

    [BZOJ4590][Shoi2015]自动刷题机 Description 曾经发明了信号增幅仪的发明家SHTSC又公开了他的新发明:自动刷题机--一种可以自动AC题目的神秘装置.自动刷题机刷题的方式 ...

  2. oracle的order by decode根据文字自定义排序的例子

    oracle的order by decode根据文字自定义排序的例子: order by decode(t.title, '当前生效预警', 1, '今日即将生效', 2, '明日预计生效', 3, ...

  3. Vue入门之旅:一报错 Unknown ... make sure to provide the "name" option及error compiling template

    报错一: Unknown custom element: <custom-select> - did you register the component correctly? For r ...

  4. SharePoint BI

    本篇博客主要针对SharePoint BI整体结构进行整理,为读者分析几种Sharepoint BI场景 先附一张自己做的结构图:

  5. sqli_labs第一关

    安装 从https://github.com/Audi-1/sqli-labs下载源代码 搭建环境用的是phpstudy 编辑sqli\sql-connections\db-creds.inc文件 修 ...

  6. Linux测试UDP端口(nc)

    # nc -vuz serveripaddress 123 Connection to serveripaddress 123 port [udp/ntp] succeeded! 结果证明UDP 12 ...

  7. JS去遍历Table的所有单元格中的内容

    用JS去遍历Table的所有单元格中的内容,可以用如下JS代码实现 function GetInfoFromTable(tableid) { var tableInfo = ""; ...

  8. Log4j 2

    Log4j – Apache Log4j 2 - Apache Log4j 2 http://logging.apache.org/log4j/2.x/ Apache Log4j 2 Apache L ...

  9. Babel编译

    Babel的目的就是让你可以使用最新的标准来开发,然后把兼容的问题交给它来完成.比如我如何在使用ES6的语法写完之后将其转换为ES5满足通用性呢? 先用这个最常用的Babel的用法来引入吧. 一  首 ...

  10. docker 构建镜像 centos7 nginx php

    #docker 构建镜像(Dockerfile) centos 7.4.1078镜像制作 nginx镜像制作(以前面centos7镜像为基础) Nginx+php镜像制作 更多操作实例,查看git里的 ...