牛的障碍Cow Steeplechase
题目描述
Farmer John has a brilliant idea for the next great spectator sport: Cow Steeplechase! As everyone knows, regular steeplechase involves a group of horses that race around a course filled with obstacles they must jump over. FJ figures the same contest should work with highly-trained cows, as long as the obstacles are made short enough.
In order to design his course, FJ makes a diagram of all the N (1 <= N <= 250) possible obstacles he could potentially build. Each one is represented by a line segment in the 2D plane that is parallel to the horizontal or vertical axis. Obstacle i has distinct endpoints (X1_i, Y1_i) and (X2_i, Y2_i) (1 <= X1_i, Y1_i, X2_i, Y2_i <= 1,000,000,000). An example is as follows:
--+-------
-----+-----
---+--- |
| | |
--+-----+--+- |
| | | | |
| --+--+--+-+-
| | | |
|
FJ would like to build as many of these obstacles as possible, subject to the constraint that no two of them intersect. Starting with the diagram above, FJ can build 7 obstacles:
----------
-----------
------- |
| |
| | |
| | | |
| | | |
| | | |
|
Two segments are said to intersect if they share any point in common, even an endpoint of one or both of the segments. FJ is certain that no two horizontal segments in the original input diagram will intersect, and that similarly no two vertical segments in the input diagram will intersect.
Please help FJ determine the maximum number of obstacles he can build.
给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段。
输入输出格式
输入格式:
* Line 1: A single integer: N.
* Lines 2..N+1: Line i+1 contains four space-separated integers representing an obstacle: X1_i, Y1_i, X2_i, and Y2_i.
输出格式:
* Line 1: The maximum number of non-crossing segments FJ can choose.
输入输出样例
输入样例#1:
3
4 5 10 5
6 2 6 12
8 3 8 5
输出样例#1:
2
Solution
网络流,正难则反,明显可以看出的是,我们可以把交叉的线段之间连边然后就可以求出最大匹配,这也就是我们需要去掉的线段的数目。一道入门题目?然而蒟蒻做了一个小时。。。
Code
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#define re register
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(arr) memset(arr, 0, sizeof(arr))
const int inf = 0x3f3f3f3f;
struct po{
int nxt,to,w;
}edge[200001];
struct point{
int x1,x2,y1,y2,id;
}a[200001];
int head[252],dep[252],s,t,n,m,num=-1,cur[2000001],sum;
inline int read()
{
int x=0,c=1;
char ch=' ';
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
while(ch=='-') c*=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*c;
}
inline void add_edge(int from,int to,int w)
{
edge[++num].nxt=head[from];
edge[num].to=to;
edge[num].w=w;
head[from]=num;
}
inline void add(int from,int to,int w)
{
add_edge(from,to,w);
add_edge(to,from,0);
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
queue<int> q;
while(!q.empty())
q.pop();
q.push(s);
dep[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(re int i=head[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(dep[v]==0&&edge[i].w>0)
{
dep[v]=dep[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
inline int dfs(int u,int dis)
{
if(u==t)
return dis;
int diss=0;
for(re int& i=cur[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(edge[i].w!=0&&dep[v]==dep[u]+1)
{
int check=dfs(v,min(dis,edge[i].w));
if(check!=0)
{
dis-=check;
diss+=check;
edge[i].w-=check;
edge[i^1].w+=check;
if(dis==0) break;
}
}
}
return diss;
}
inline int dinic()
{
int ans=0;
while(bfs())
{
for(re int i=0;i<=n;i++)
cur[i]=head[i];
while(int d=dfs(s,inf))
ans+=d;
}
return ans;
}
int main()
{
memset(head,-1,sizeof(head));
n=read();
s=0;t=n+1;
for(re int i=1;i<=n;i++){
int x1,y1,x2,y2;
x1=read();y1=read();x2=read();y2=read();
if(x1>x2) swap(x1,x2);if(y1>y2) swap(y1,y2);
a[i].x1=x1;a[i].y1=y1;a[i].x2=x2;a[i].y2=y2;
if(a[i].x1==a[i].x2) a[i].id=1;
else a[i].id=2;
}
for(re int i=1;i<=n;i++){
if(a[i].id==1){
int H=a[i].x1;add(s,i,1);
for(re int j=i+1;j<=n;j++){
if(a[j].id==2&&a[j].x1<=H&&a[j].x2>=H&&a[i].y1<=a[j].y1&&a[i].y2>=a[j].y2){
add(i,j,1);
sum++;
}
}
}else {
add(i,t,1);
int L=a[i].y1;
for(re int j=i+1;j<=n;j++){
if(a[j].id==1&&a[j].y1<=L&&a[j].y2>=L&&a[i].x1<=a[j].x1&&a[i].x2>=a[j].x2){
add(j,i,1);
sum++;
}
}
}
}
int d=dinic();
cout<<n-d;
}
牛的障碍Cow Steeplechase的更多相关文章
- Luogu P3033 [USACO11NOV]牛的障碍Cow Steeplechase(二分图匹配)
P3033 [USACO11NOV]牛的障碍Cow Steeplechase 题意 题目描述 --+------- -----+----- ---+--- | | | | --+-----+--+- ...
- [USACO11NOV]牛的障碍Cow Steeplechase
洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...
- 洛谷 - P3033 - 牛的障碍Cow Steeplechase - 二分图最大独立集
https://www.luogu.org/fe/problem/P3033 二分图最大独立集 注意输入的时候控制x1,y1,x2,y2的相对大小. #include<bits/stdc++.h ...
- [USACO11NOV]牛的障碍Cow Steeplechase(匈牙利算法)
洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...
- 「USACO11NOV」牛的障碍Cow Steeplechase 解题报告
题面 横的,竖的线短段,求最多能取几条没有相交的线段? 思路 学过网络流的童鞋在哪里? 是时候重整网络流雄风了! 好吧,废话不多说 这是一道最小割的题目 怎么想呢? 要取最多,那反过来不就是不能取的要 ...
- bzoj1648 / P2853 [USACO06DEC]牛的野餐Cow Picnic
P2853 [USACO06DEC]牛的野餐Cow Picnic 你愿意的话,可以写dj. 然鹅,对一个缺时间的退役选手来说,暴力模拟是一个不错的选择. 让每个奶牛都把图走一遍,显然那些被每个奶牛都走 ...
- bzoj1623 / P2909 [USACO08OPEN]牛的车Cow Cars
P2909 [USACO08OPEN]牛的车Cow Cars 显然的贪心. 按速度从小到大排序.然后找车最少的车道,查询是否能填充进去. #include<iostream> #inclu ...
- bzoj1604 / P2906 [USACO08OPEN]牛的街区Cow Neighborhoods
P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 考虑维护曼哈顿距离:$\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} ...
- 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
随机推荐
- Yolo+Windows 配置(详细版)
一.配置环境 VS2013+显卡GtX1080ti+CUDA7.5+Opencv3.1.0+pthread pthread:ftp://sourceware.org/pub/pthreads-win ...
- hdu1814(2-SAT)
2-SAT 求出可能的解,但是这个解要是字典序最小的,所以只能采用2-SAT基本思想来解. 从小到大开始,对一个可能的点染色,染为1,然后dfs其所有能到达的点,如果其中出现一个已经标号为-1的话,那 ...
- ryu的RESTAPI简介——我主要用于下发和查看流表
一.Rest API简介 REST即表述性状态传递(RepreSentational State Transfer),是一种针对网络应用的设计和开发方式,可以降低开发的复杂性,提高系统的可伸缩性. 表 ...
- [LintCode] 删除链表中倒数第n个节点
/** * Definition of ListNode * class ListNode { * public: * int val; * ListNode *next; * ListNode(in ...
- 学习使用turtlebot2——turtlebot2上使用Hokuyo激光雷达(型号UST-10LX)
目标 在turtlebot2上添加Hokuyo激光雷达传感器,使用激光雷达调用gmapping进行建图. 配置情况 电脑使用Ubuntu 14.04版本,ROS为 Indigo,激光雷 ...
- pip安装Scrapy框架报错
安装: pip3 install scrapy==1.1.0rc3 一..解决scrapy安装错误: 二.具体操作: 1.在http://landinghub.visualstudio.com/vis ...
- js parseInt()函数中的问题。。
今天在看<javascript 高级程序设计>时, 与我的输出结果不符合, <!DOCTYPE html> <html lang="en"> & ...
- convention over configuration 约定优于配置 按约定编程 约定大于配置 PEP 20 -- The Zen of Python
为什么说 Java 程序员必须掌握 Spring Boot ?_知识库_博客园 https://kb.cnblogs.com/page/606682/ 为什么说 Java 程序员必须掌握 Spring ...
- django--博客--forms组件-用户注册
---------------------------------------------前端页面简易代码----------------------------------------------- ...
- 【我的Android进阶之旅】解决SVN Cleanup错误: Failed to run the WC DB work queue associated with
错误描述 在Android Studio中点击VCS向下箭头使用SVN Update功能更新代码的时候,报错如下所示: 错误描述信息: Error:svn: E155037: Previous ope ...