牛的障碍Cow Steeplechase
题目描述
Farmer John has a brilliant idea for the next great spectator sport: Cow Steeplechase! As everyone knows, regular steeplechase involves a group of horses that race around a course filled with obstacles they must jump over. FJ figures the same contest should work with highly-trained cows, as long as the obstacles are made short enough.
In order to design his course, FJ makes a diagram of all the N (1 <= N <= 250) possible obstacles he could potentially build. Each one is represented by a line segment in the 2D plane that is parallel to the horizontal or vertical axis. Obstacle i has distinct endpoints (X1_i, Y1_i) and (X2_i, Y2_i) (1 <= X1_i, Y1_i, X2_i, Y2_i <= 1,000,000,000). An example is as follows:
--+-------
-----+-----
---+--- |
| | |
--+-----+--+- |
| | | | |
| --+--+--+-+-
| | | |
|
FJ would like to build as many of these obstacles as possible, subject to the constraint that no two of them intersect. Starting with the diagram above, FJ can build 7 obstacles:
----------
-----------
------- |
| |
| | |
| | | |
| | | |
| | | |
|
Two segments are said to intersect if they share any point in common, even an endpoint of one or both of the segments. FJ is certain that no two horizontal segments in the original input diagram will intersect, and that similarly no two vertical segments in the input diagram will intersect.
Please help FJ determine the maximum number of obstacles he can build.
给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段。
输入输出格式
输入格式:
* Line 1: A single integer: N.
* Lines 2..N+1: Line i+1 contains four space-separated integers representing an obstacle: X1_i, Y1_i, X2_i, and Y2_i.
输出格式:
* Line 1: The maximum number of non-crossing segments FJ can choose.
输入输出样例
输入样例#1:
3
4 5 10 5
6 2 6 12
8 3 8 5
输出样例#1:
2
Solution
网络流,正难则反,明显可以看出的是,我们可以把交叉的线段之间连边然后就可以求出最大匹配,这也就是我们需要去掉的线段的数目。一道入门题目?然而蒟蒻做了一个小时。。。
Code
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#define re register
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(arr) memset(arr, 0, sizeof(arr))
const int inf = 0x3f3f3f3f;
struct po{
int nxt,to,w;
}edge[200001];
struct point{
int x1,x2,y1,y2,id;
}a[200001];
int head[252],dep[252],s,t,n,m,num=-1,cur[2000001],sum;
inline int read()
{
int x=0,c=1;
char ch=' ';
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
while(ch=='-') c*=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*c;
}
inline void add_edge(int from,int to,int w)
{
edge[++num].nxt=head[from];
edge[num].to=to;
edge[num].w=w;
head[from]=num;
}
inline void add(int from,int to,int w)
{
add_edge(from,to,w);
add_edge(to,from,0);
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
queue<int> q;
while(!q.empty())
q.pop();
q.push(s);
dep[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(re int i=head[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(dep[v]==0&&edge[i].w>0)
{
dep[v]=dep[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
inline int dfs(int u,int dis)
{
if(u==t)
return dis;
int diss=0;
for(re int& i=cur[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(edge[i].w!=0&&dep[v]==dep[u]+1)
{
int check=dfs(v,min(dis,edge[i].w));
if(check!=0)
{
dis-=check;
diss+=check;
edge[i].w-=check;
edge[i^1].w+=check;
if(dis==0) break;
}
}
}
return diss;
}
inline int dinic()
{
int ans=0;
while(bfs())
{
for(re int i=0;i<=n;i++)
cur[i]=head[i];
while(int d=dfs(s,inf))
ans+=d;
}
return ans;
}
int main()
{
memset(head,-1,sizeof(head));
n=read();
s=0;t=n+1;
for(re int i=1;i<=n;i++){
int x1,y1,x2,y2;
x1=read();y1=read();x2=read();y2=read();
if(x1>x2) swap(x1,x2);if(y1>y2) swap(y1,y2);
a[i].x1=x1;a[i].y1=y1;a[i].x2=x2;a[i].y2=y2;
if(a[i].x1==a[i].x2) a[i].id=1;
else a[i].id=2;
}
for(re int i=1;i<=n;i++){
if(a[i].id==1){
int H=a[i].x1;add(s,i,1);
for(re int j=i+1;j<=n;j++){
if(a[j].id==2&&a[j].x1<=H&&a[j].x2>=H&&a[i].y1<=a[j].y1&&a[i].y2>=a[j].y2){
add(i,j,1);
sum++;
}
}
}else {
add(i,t,1);
int L=a[i].y1;
for(re int j=i+1;j<=n;j++){
if(a[j].id==1&&a[j].y1<=L&&a[j].y2>=L&&a[i].x1<=a[j].x1&&a[i].x2>=a[j].x2){
add(j,i,1);
sum++;
}
}
}
}
int d=dinic();
cout<<n-d;
}
牛的障碍Cow Steeplechase的更多相关文章
- Luogu P3033 [USACO11NOV]牛的障碍Cow Steeplechase(二分图匹配)
P3033 [USACO11NOV]牛的障碍Cow Steeplechase 题意 题目描述 --+------- -----+----- ---+--- | | | | --+-----+--+- ...
- [USACO11NOV]牛的障碍Cow Steeplechase
洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...
- 洛谷 - P3033 - 牛的障碍Cow Steeplechase - 二分图最大独立集
https://www.luogu.org/fe/problem/P3033 二分图最大独立集 注意输入的时候控制x1,y1,x2,y2的相对大小. #include<bits/stdc++.h ...
- [USACO11NOV]牛的障碍Cow Steeplechase(匈牙利算法)
洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...
- 「USACO11NOV」牛的障碍Cow Steeplechase 解题报告
题面 横的,竖的线短段,求最多能取几条没有相交的线段? 思路 学过网络流的童鞋在哪里? 是时候重整网络流雄风了! 好吧,废话不多说 这是一道最小割的题目 怎么想呢? 要取最多,那反过来不就是不能取的要 ...
- bzoj1648 / P2853 [USACO06DEC]牛的野餐Cow Picnic
P2853 [USACO06DEC]牛的野餐Cow Picnic 你愿意的话,可以写dj. 然鹅,对一个缺时间的退役选手来说,暴力模拟是一个不错的选择. 让每个奶牛都把图走一遍,显然那些被每个奶牛都走 ...
- bzoj1623 / P2909 [USACO08OPEN]牛的车Cow Cars
P2909 [USACO08OPEN]牛的车Cow Cars 显然的贪心. 按速度从小到大排序.然后找车最少的车道,查询是否能填充进去. #include<iostream> #inclu ...
- bzoj1604 / P2906 [USACO08OPEN]牛的街区Cow Neighborhoods
P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 考虑维护曼哈顿距离:$\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} ...
- 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
随机推荐
- 57、Design Support Library 介绍及环境搭建
一.Material Design几个要素 扁平化.简洁: 水波反馈: 良好体验的过渡动画: 材料空间位置的直观变化: 二.Android Studio配置 在 build.gradle 文件中加入, ...
- Delphi xe7 android实现透明度可以调整的对话框
Delphi xe7 android实现透明度可以调整的对话框 Delphi xe7 android实现透明度可以调整的对话框 Delphi xe7 android实现透明度可以调整的对话框 要实现对 ...
- 局域网查看工具Lansee注册码
相信好多人为查看局域网IP发愁,今天给大家推荐一个工具 lansee 猛戳下载
- SPOJ Number of Palindromes(回文树)
Number of Palindromes Time Limit: 100MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu ...
- Java应用多机器部署定时任务解决方案
Java多机部署下定时任务的处理方案. 本文转自:http://www.cnblogs.com/xunianchong/p/6958548.html 需求: 有两台服务器同时部署了同一套代码, 代码中 ...
- 转!java操作redis
package sgh.main.powersite; import java.util.ArrayList; import java.util.HashMap; import java.util.I ...
- python多线程的适用场景
1.多线程对于计算密集型无用 需求:列表li1每个元素加1,列表li2每个元素加100 # 导入模块 import threading li1 = [11, 22, 33] # +1 li2 = [4 ...
- Python高级教程-迭代
Python中的迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Iteration). 在Python中,迭代是通过for...in ...
- python 自动获取(打印)代码中的变量的名字字串
方法一: import inspectimport re def varname(p): for line in inspect.getframeinfo(inspect.currentframe() ...
- MariaDB日志
1.查询日志:一般来说不开开启(会产生额外压力,并且不一定有价值),query log 记录查询操作:可以记录到文件(file)中也可记录到表(table)中 general_log=ON|OFF g ...