[动态规划]UVA437 - The Tower of Babylon
| The Tower of Babylon |
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story:
The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions
.
A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower,
one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized
bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
Input and Output
The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is
30. Each of the next n lines contains three integers representing the values
,
and
.
Input is terminated by a value of zero (0) for n.
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum
height = height"
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
题意:
也许你曾听过巴比伦塔的传说,如今这个故事的很多细节已经被遗忘了。如今,我们要告诉你整个故事:
巴比伦人有n种不同的积木。每种积木都是实心长方体。且数目都是无限的。
第i种积木的长宽高分别为{ x i , y i , z i }。积木能够被旋转。所曾经面的长宽高是能够互相换的。
也就是当中2个组成底部的长方形,剩下的一个为高度。巴比伦人想要尽可能的用积木来堆高塔,可是两块积木要叠在一起是有条件的:仅仅有在第一块积木的底部2个边均小于第二块积木的底部相对的2个边时,第一块积木才干够叠在第二块积木上方。比如:底部为3x8的积木能够放在底部为4x10的积木上,可是无法放在底部为6x7的积木上。
给你一些积木的资料,你的任务是写一个程式算出能够堆出的塔最高是多少。
思路:最长上升连续子序列的题目,最重要的是建模的过程,由于积木能够翻转。所以有六种状态,之后对于每种状态排个序,预处理下。后面会省事非常多。
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
class Block
{
public:
int x,y,z;
void fun(int a,int b,int c)
{
x=a;
y=b;
z=c;
}
}node[200];
bool cmp(Block r,Block t)
{
return r.x*r.y<t.x*t.y;
}
int dp[200];
int main()
{
int num,cnt=0;
while(cin>>num&&num)
{
int a,b,c;
int m=0;
for(int i=0;i<num;i++)
{
cin>>a>>b>>c;
node[m++].fun(a, b, c);
node[m++].fun(a, c, b);
node[m++].fun(b, a, c);
node[m++].fun(b, c, a);
node[m++].fun(c, a, b);
node[m++].fun(c, b, a);
}
sort(node,node+m,cmp);
int maxlen=0;
memset(dp,0,sizeof(dp));
for(int i=0;i<m;i++)
{
dp[i]=node[i].z;
for(int j=0;j<i;j++)
{
if(node[i].x>node[j].x&&node[i].y>node[j].y)
{
dp[i]=max(dp[i],dp[j]+node[i].z);
}
}
if(dp[i]>maxlen) maxlen=dp[i];
}
cout<<"Case "<<++cnt<<": maximum height = "<<maxlen<<endl;
}
return 0;
}[动态规划]UVA437 - The Tower of Babylon的更多相关文章
- ACM - 动态规划 - UVA437 The Tower of Babylon
UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...
- Uva437 The Tower of Babylon
https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...
- UVa437 The Tower of Babylon(巴比伦塔)
题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...
- 【DP】【Uva437】UVA437 The Tower of Babylon
传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVA437-The Tower of Babylon(动态规划基础)
Problem UVA437-The Tower of Babylon Accept: 3648 Submit: 12532Time Limit: 3000 mSec Problem Descrip ...
- DAG 动态规划 巴比伦塔 B - The Tower of Babylon
题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- POJ 2241 The Tower of Babylon
The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...
随机推荐
- ITDB系统搭建及实时备份
ITDB系统搭建及实时备份 ITDB简介 ITDB一款来自希腊的开源IT资产管理系统,它是基于Web的IT资产信息管理系统.对于那些IT设备较多而又缺少管理IT资产信息工具的公司,ITDB是一个不错的 ...
- Ubuntu Apache配置及开启mod_rewrite模块
刚刚将服务器系统从CentOS换成Ubuntu,将MySQL,Apache,PHP和Wordpress安装好后,发现打开主页是正常的,但是打开文章页面时出现错误.因为使用了自定义的固定链接设置,那自然 ...
- MapReduce实战(五)实现关联查询
需求: 利用MapReduce程序,实现SQL语句中的join关联查询. 订单数据表order: id date pid amount 1001 20150710 P0001 2 1002 20150 ...
- ddd 架构设计——abp
一.为什么要分层 分层架构是所有架构的鼻祖,分层的作用就是隔离,不过,我们有时候有个误解,就是把层和程序集对应起来,就比如简单三层架构中,在你的解决方案中,一般会有三个程序集项目:XXUI.dll.X ...
- 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)
http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...
- ubuntu14.04安装vmware workstation
0) Do the basic system installation of Ubuntu 14.04 LTS (Server or Desktop) 1) wget the installer wg ...
- WPF通过异常来验证用户输入
在WPF中使用数据绑定,如果用户输入和绑定类型转换失败,控件就会显示出现错误的模板, 比如一个Textbox绑定到一个int 属性,如果用户输入一个string,那这个textbox就会显示错误模板, ...
- boost数据结构tuple
boost数据结构tuple tuple(元组)定义了一个有固定数目元素的容器,其中每个元素类型可以不相同,这与其它容器有着本质的区别!vector和array虽然可以容纳很多元素,但是元素的类型必须 ...
- less.js
在引入你自己的less文件的时候 <link rel="stylesheet/less" href="styles/site.less"> 之后再引 ...
- ios开源东西
今天,我们将介绍20个在GitHub上非常受开发者欢迎的iOS开源项目,你准备好了吗? 1. AFNetworking 在众多iOS开源项目中,AFNetworking可以称得上是最受开发者欢迎的库项 ...