The Tower of Babylon 

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story:

The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions  .
A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower,
one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized
bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

Input and Output

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is
30. Each of the next n lines contains three integers representing the values  ,  and  .

Input is terminated by a value of zero (0) for n.

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum
height =
 height"

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

题意:

也许你曾听过巴比伦塔的传说,如今这个故事的很多细节已经被遗忘了。如今,我们要告诉你整个故事:

巴比伦人有n种不同的积木。每种积木都是实心长方体。且数目都是无限的。

第i种积木的长宽高分别为{ i , y i , z i }。积木能够被旋转。所曾经面的长宽高是能够互相换的。

也就是当中2个组成底部的长方形,剩下的一个为高度。巴比伦人想要尽可能的用积木来堆高塔,可是两块积木要叠在一起是有条件的:仅仅有在第一块积木的底部2个边均小于第二块积木的底部相对的2个边时,第一块积木才干够叠在第二块积木上方。比如:底部为3x8的积木能够放在底部为4x10的积木上,可是无法放在底部为6x7的积木上。

给你一些积木的资料,你的任务是写一个程式算出能够堆出的塔最高是多少。

思路:最长上升连续子序列的题目,最重要的是建模的过程,由于积木能够翻转。所以有六种状态,之后对于每种状态排个序,预处理下。后面会省事非常多。

#include<iostream>
#include<cstring>
#include<algorithm> using namespace std; class Block
{
public:
int x,y,z;
void fun(int a,int b,int c)
{
x=a;
y=b;
z=c;
}
}node[200]; bool cmp(Block r,Block t)
{
return r.x*r.y<t.x*t.y;
} int dp[200]; int main()
{
int num,cnt=0;
while(cin>>num&&num)
{
int a,b,c;
int m=0;
for(int i=0;i<num;i++)
{
cin>>a>>b>>c;
node[m++].fun(a, b, c);
node[m++].fun(a, c, b);
node[m++].fun(b, a, c);
node[m++].fun(b, c, a);
node[m++].fun(c, a, b);
node[m++].fun(c, b, a);
}
sort(node,node+m,cmp);
int maxlen=0;
memset(dp,0,sizeof(dp));
for(int i=0;i<m;i++)
{
dp[i]=node[i].z;
for(int j=0;j<i;j++)
{
if(node[i].x>node[j].x&&node[i].y>node[j].y)
{
dp[i]=max(dp[i],dp[j]+node[i].z);
}
}
if(dp[i]>maxlen) maxlen=dp[i];
}
cout<<"Case "<<++cnt<<": maximum height = "<<maxlen<<endl;
}
return 0;
}

[动态规划]UVA437 - The Tower of Babylon的更多相关文章

  1. ACM - 动态规划 - UVA437 The Tower of Babylon

    UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...

  2. Uva437 The Tower of Babylon

    https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...

  3. UVa437 The Tower of Babylon(巴比伦塔)

    题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...

  4. 【DP】【Uva437】UVA437 The Tower of Babylon

    传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...

  5. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  6. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

  7. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  8. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  9. POJ 2241 The Tower of Babylon

    The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...

随机推荐

  1. Linux之精灵进程

    一.引言 工作中有时候可能会写一些这样的程序,它作为后台进程运行,生命周期比一般的进程要长,它在系统开机时运行,直到被强制关闭或者系统关机时退出.它就是精灵进程或者也叫做守护进程--daemon pr ...

  2. Unity3D中简单的C#异步Socket实现

    Unity3D中简单的C#异步Socket实现 简单的异步Socket实现..net框架自身提供了很完善的Socket底层.笔者在做Unity3D小东西的时候需要使用到Socket网络通信.于是决定自 ...

  3. nodejs系列笔记01---Buffer

    纯JavaScript无法处理二进制数据,buffer就是用来处理二进制数据的 原始数据保存在buffer实例中,一个buffer实例类似于数组.buffer的大小在建立时指定的不可更改. buffe ...

  4. java 利用同步工具类控制线程

    前言 参考来源:<java并发编程实战> 同步工具类:根据工具类的自身状态来协调线程的控制流.通过同步工具类,来协调线程之间的行为. 可见性:在多线程环境下,当某个属性被其他线程修改后,其 ...

  5. 下列哪一个接口定义了用于查找、创建和删除EJB实例

    下列哪一个接口定义了用于查找.创建和删除EJB实例 A.Home B.Remote C.Local D.Message 解答:A remote接口定义了业务方法,用于EJB客户端调用业务方法. hom ...

  6. 如何连接OracleRAC

    查看tnsname 查看服务器上tnsname.ora内容: 位置:/oracle/db/product/11.2.0/network/admin/tnsname.ora   连接rac 根据以上信息 ...

  7. uva 10494 - If We Were a Child Again 大数除法和取余

    uva 10494 - If We Were a Child Again If We Were a Child Again Input: standard inputOutput: standard ...

  8. linux 环境 tomcat 莫名奇妙挂掉

    ::-exec-] org.apache.coyote.http11.Http11Processor.service Error processing request java.lang.NullPo ...

  9. linux的bash与sh的区别

    转自:https://zhidao.baidu.com/question/305415121.html https://zhidao.baidu.com/question/176780008.html ...

  10. [Algorithms] Counting Sort

    Counting sort is a linear time sorting algorithm. It is used when all the numbers fall in a fixed ra ...