[2018湖南省队集训] 6.28 T2 color

毒瘤计数题2333,(小声)k其实可以出到1e9,不过这样求组合数的时候就要记1000种数的1~1000次下降幂(用到的组合数中第一维在1e9级别的只有1000种左右,第二维都是<=1000),写起来可能比较麻烦。。。。不过既然k只有1e6我们何必要这么毒瘤呢233333
考虑什么样的棋盘是合法的。
发现只有中间的棋盘出现的颜色集合是 最边上两列棋盘出现颜色集合 的交集 的子集 的时候,才合法(考虑扫描线向右移动一列)。
于是我们可以先枚举 交集大小,再枚举边上两列的总颜色数,然后就可以直接用组合数+斯特林数 乘乘乘乘.... 算啦。
以下有几个地方可以优化很大的常数:
1.只和交集大小和k(或者其他常量)有关的组合数或者其他东西,可以在算完总颜色数的答案之和之和再乘上,将减少大量的乘法运算。。。
2.有两个组合数连乘的地方推一推式子发现有一对分子分母可以消去一个阶乘,常数*= (2/3) [然并卵]
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
const int N=1005,ha=1e9+7; inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;} int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} inline int sq(int x){ return x*(ll)x%ha;} int jc[N*N],ni[N*N],n,m,T,k,ans,S[N][N],num; inline int C(int x,int y){ return jc[x]*(ll)ni[y]%ha*(ll)ni[x-y]%ha;} inline void init(){
jc[0]=1; for(int i=1;i<=1e6;i++) jc[i]=jc[i-1]*(ll)i%ha;
ni[1000000]=ksm(jc[1000000],ha-2);
for(int i=1e6;i;i--) ni[i-1]=ni[i]*(ll)i%ha; S[0][0]=1;
for(int i=1;i<=1000;i++)
for(int j=1;j<=i;j++) S[i][j]=add(S[i-1][j-1],S[i-1][j]*(ll)j%ha);
} inline void solve(){
if(m==1){
for(int i=1;i<=n;i++) ADD(ans,C(k,i)*(ll)S[n][i]%ha*(ll)jc[i]%ha);
return;
} num=n*(m-2); for(int i=0,tmp=0;i<=n;tmp=0,i++){
for(int j=0,u,v;(v=(j<<1)+i)<=k&&(u=i+j)<=n;j++)
ADD(tmp,sq(ni[j])%ha*(ll)ni[k-v]%ha*(ll)sq(S[n][u]*(ll)jc[u]%ha)%ha); ADD(ans,tmp*(ll)C(k,i)%ha*(ll)ksm(i,num)%ha*(ll)jc[k-i]%ha);
}
} int main(){
freopen("color.in","r",stdin);
freopen("color.out","w",stdout); init(); scanf("%d",&T);
while(T--){
ans=0,scanf("%d%d%d",&n,&m,&k);
solve(),printf("%d\n",ans);
} return 0;
}
[2018湖南省队集训] 6.28 T2 color的更多相关文章
- [2018湖南省队集训] 6.28 T3 simulate
这道模拟题出的我毫无脾气2333 最重要的是先要发现操作顺序不影响最后的答案,也就是每次随便挑一个>=2的数进行操作最后总是可以得到同样的数列. (这个还不太难想qwq) 但是最骚的是接下来的模 ...
- [2018湖南省队集训] 6.24 T1 marshland
题面在这里! 一开始感觉像一个类似二分图的最小割,于是成功跑偏2333333 很容易发现一个关键性质,'L'的两个角落在的偶数格 的行(或者列)的奇偶性一定不同.... 于是我们再把偶数格按照行(或者 ...
- 【考试记录】2018 山东省队集训第一轮D4(雾)
T1题意: 给你一个$n\times m$的矩阵$B$,求它能由最少多少个形如两个向量之积$(n\times 1)\times(1\times m)$的矩阵相加得到. 题解: 考虑上界,最多需要$mi ...
- FJ省队集训最终测试 T2
思路:发现如果一个人一共选了x个点,那么选中某一个点对的概率都是一样的,一个人选x个点的总方案是C(n,x),一个人选中某个点对的总方案是C(n-2,x-2),这样,那么选中某个点对的概率就是 x*( ...
- 湖南省队集训 Day 2
从这里开始 Problem A 走路 Problem B 游戏 Problem C 有趣的字符串题 暴力分又没骗满sad..... Problem A 走路 $O(n^2)$动态规划是显然的. 更新方 ...
- 【欧拉回路+最小生成树】SD开车@山东2018省队一轮集训day1
目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@ ...
- HN2018省队集训
HN2018省队集训 Day1 今天的题目来自于雅礼的高二学长\(dy0607\). 压缩包下载 密码: 27n7 流水账 震惊!穿着该校校服竟然在四大名校畅通无阻?霸主地位已定? \(7:10\)从 ...
- JS省队集训记
不知不觉省队集训已经结束,离noi也越来越近了呢 论考前实战训练的重要性,让我随便总结一下这几天的考试 Day 1 T1 唉,感觉跟xj测试很像啊?meet in middle,不过这种题不多测是什么 ...
- 2018HN省队集训
HNOI2018省队集训 Day 1 流水账 T1 tree 换根+求\(lca\)+求子树和,一脸bzoj3083遥远的国度的既视感.子树和讨论一下就好了,\(lca\)?也是大力讨论一波. 先写了 ...
随机推荐
- Spring总结以及在面试中的一些问题(山东数漫江湖)
1.谈谈你对spring IOC和DI的理解,它们有什么区别? IoC Inverse of Control 反转控制的概念,就是将原本在程序中手动创建UserService对象的控制权,交由Spri ...
- Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!]
题目链接:http://codeforces.com/contest/984 A. Game time limit per test:2 seconds memory limit per test:5 ...
- 报错注入遇到ERROR 1242 (21000): Subquery returns more than 1 row解决方案
我的SQL语句是这样写的. mysql> select 1,2,3 and updatexml(1,concat(1,(select user from mysql.user),1),1);ER ...
- leetcode 343. Integer Break(dp或数学推导)
Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...
- HDU 4305 Lightning Matrix Tree定理
题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...
- myeclipse安装插件phpeclipse后进行PHP代码编写
平常一般写java代码,有时也捣腾一下php,原来安装过zend studio来编写php代码,无奈电脑越来越卡,于是卸载了zend,然后在myeclipse中安装phpeclipse这款插件来完成p ...
- 微信小程序获取输入框(input)内容
微信小程序---获取输入框(input)内容 wxml <input placeholder="请输入手机号码" maxlength="11" type= ...
- Jquery屏蔽浏览器的F1-F12快捷键,在IE,GOOGLE下测试均无问题
在网上找了找,很多都是js实现的,东找西找,再加上自己的想法也勉强的完成了,直接看代码 <script type="text/javascript" src="Sc ...
- docker基于本地模版导入创建镜像
/* 因为直接去网站拿会下载的慢,所以直接到网站里,对着此包--〉右键--〉复制链接地址 网站地址:https://openvz.org/Download/template/precreated */ ...
- C#面向对象(OOP)入门—第二天—多态和继承(继承)
介绍: 第一天的内容主要是不同情形下的方法重载.这一部分则主要讲面向对象中继承的概念.首先用一个要点图形来定义继承. 继承 一个简单的例子: ClassA: class ClassA:ClassB { ...