[2018湖南省队集训] 6.28 T2 color

毒瘤计数题2333,(小声)k其实可以出到1e9,不过这样求组合数的时候就要记1000种数的1~1000次下降幂(用到的组合数中第一维在1e9级别的只有1000种左右,第二维都是<=1000),写起来可能比较麻烦。。。。不过既然k只有1e6我们何必要这么毒瘤呢233333
考虑什么样的棋盘是合法的。
发现只有中间的棋盘出现的颜色集合是 最边上两列棋盘出现颜色集合 的交集 的子集 的时候,才合法(考虑扫描线向右移动一列)。
于是我们可以先枚举 交集大小,再枚举边上两列的总颜色数,然后就可以直接用组合数+斯特林数 乘乘乘乘.... 算啦。
以下有几个地方可以优化很大的常数:
1.只和交集大小和k(或者其他常量)有关的组合数或者其他东西,可以在算完总颜色数的答案之和之和再乘上,将减少大量的乘法运算。。。
2.有两个组合数连乘的地方推一推式子发现有一对分子分母可以消去一个阶乘,常数*= (2/3) [然并卵]
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
const int N=1005,ha=1e9+7; inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;} int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} inline int sq(int x){ return x*(ll)x%ha;} int jc[N*N],ni[N*N],n,m,T,k,ans,S[N][N],num; inline int C(int x,int y){ return jc[x]*(ll)ni[y]%ha*(ll)ni[x-y]%ha;} inline void init(){
jc[0]=1; for(int i=1;i<=1e6;i++) jc[i]=jc[i-1]*(ll)i%ha;
ni[1000000]=ksm(jc[1000000],ha-2);
for(int i=1e6;i;i--) ni[i-1]=ni[i]*(ll)i%ha; S[0][0]=1;
for(int i=1;i<=1000;i++)
for(int j=1;j<=i;j++) S[i][j]=add(S[i-1][j-1],S[i-1][j]*(ll)j%ha);
} inline void solve(){
if(m==1){
for(int i=1;i<=n;i++) ADD(ans,C(k,i)*(ll)S[n][i]%ha*(ll)jc[i]%ha);
return;
} num=n*(m-2); for(int i=0,tmp=0;i<=n;tmp=0,i++){
for(int j=0,u,v;(v=(j<<1)+i)<=k&&(u=i+j)<=n;j++)
ADD(tmp,sq(ni[j])%ha*(ll)ni[k-v]%ha*(ll)sq(S[n][u]*(ll)jc[u]%ha)%ha); ADD(ans,tmp*(ll)C(k,i)%ha*(ll)ksm(i,num)%ha*(ll)jc[k-i]%ha);
}
} int main(){
freopen("color.in","r",stdin);
freopen("color.out","w",stdout); init(); scanf("%d",&T);
while(T--){
ans=0,scanf("%d%d%d",&n,&m,&k);
solve(),printf("%d\n",ans);
} return 0;
}
[2018湖南省队集训] 6.28 T2 color的更多相关文章
- [2018湖南省队集训] 6.28 T3 simulate
这道模拟题出的我毫无脾气2333 最重要的是先要发现操作顺序不影响最后的答案,也就是每次随便挑一个>=2的数进行操作最后总是可以得到同样的数列. (这个还不太难想qwq) 但是最骚的是接下来的模 ...
- [2018湖南省队集训] 6.24 T1 marshland
题面在这里! 一开始感觉像一个类似二分图的最小割,于是成功跑偏2333333 很容易发现一个关键性质,'L'的两个角落在的偶数格 的行(或者列)的奇偶性一定不同.... 于是我们再把偶数格按照行(或者 ...
- 【考试记录】2018 山东省队集训第一轮D4(雾)
T1题意: 给你一个$n\times m$的矩阵$B$,求它能由最少多少个形如两个向量之积$(n\times 1)\times(1\times m)$的矩阵相加得到. 题解: 考虑上界,最多需要$mi ...
- FJ省队集训最终测试 T2
思路:发现如果一个人一共选了x个点,那么选中某一个点对的概率都是一样的,一个人选x个点的总方案是C(n,x),一个人选中某个点对的总方案是C(n-2,x-2),这样,那么选中某个点对的概率就是 x*( ...
- 湖南省队集训 Day 2
从这里开始 Problem A 走路 Problem B 游戏 Problem C 有趣的字符串题 暴力分又没骗满sad..... Problem A 走路 $O(n^2)$动态规划是显然的. 更新方 ...
- 【欧拉回路+最小生成树】SD开车@山东2018省队一轮集训day1
目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@ ...
- HN2018省队集训
HN2018省队集训 Day1 今天的题目来自于雅礼的高二学长\(dy0607\). 压缩包下载 密码: 27n7 流水账 震惊!穿着该校校服竟然在四大名校畅通无阻?霸主地位已定? \(7:10\)从 ...
- JS省队集训记
不知不觉省队集训已经结束,离noi也越来越近了呢 论考前实战训练的重要性,让我随便总结一下这几天的考试 Day 1 T1 唉,感觉跟xj测试很像啊?meet in middle,不过这种题不多测是什么 ...
- 2018HN省队集训
HNOI2018省队集训 Day 1 流水账 T1 tree 换根+求\(lca\)+求子树和,一脸bzoj3083遥远的国度的既视感.子树和讨论一下就好了,\(lca\)?也是大力讨论一波. 先写了 ...
随机推荐
- 作为一名前端开发工程师,你必须掌握的WEB模板引擎:Handlebars
作为一名前端开发工程师,你必须掌握的WEB模板引擎:Handlebars 一.为什么需要使用模板引擎? 关于为什么要使用模板引擎,按照我常对学生说的一句话就是:不用重复造轮子.. 简单来说,模板最 ...
- 转一篇sublime必备的一些插件
Package Control 功能:安装包管理 简介:sublime插件控制台,提供添加.删除.禁用.查找插件等功能 使用:https://sublime.wbond.net/installatio ...
- js_读【javascript面向对象编程指南】笔记
写在前面: 工欲善其事,必先利其器.编程的器,是前人总结的经验,常言道站在巨人的肩膀上开发,往往比自己另辟蹊径容易的多.经验藏于书,故有书中自有颜如玉,书中自有黄金屋,我也一度认为读书要花费很多时间, ...
- Python与RPC -- (转)
XML-RPC xmlrpc是使用http协议做为传输协议的rpc机制,使用xml文本的方式传输命令和数据. 一个rpc系统,必然包括2个部分: 1)rpc client,用来向rpc server调 ...
- base--AuditObject
//参考base-4.0.2.jarpublic class AuditObject extends HashMap<String, Object> implements TimeRefe ...
- H264协议(转)
码率(Bitrate).帧率(FPS).分辨率和清晰度的联系与区别:https://blog.csdn.net/pc9319/article/details/79621352 H.264编码原理以及I ...
- C++ STL结构总结
1. 什么是STL 它的全名是stand template library, 标准模板库,主要是将一些结构和算法写成模板,以便能够实现对任意类型的对象都可以操作,而不需要再一次去写一些算法及结构. 它 ...
- HTML5表单之Input 类型- Date Pickers(日期选择器)
HTML5 拥有多个可供选取日期和时间的新输入类型: date-选取日.月.年 month-选取月.年 week-选取周和年 time-选取时间(小时和分钟) datetime-选取时间.日.月.年( ...
- MYSQL 索引无效和索引有效的详细介绍
1.WHERE字句的查询条件里有不等于号(WHERE column!=...),MYSQL将无法使用索引 2.类似地,如果WHERE字句的查询条件里使用了函数(如:WHERE DAY(column)= ...
- ora11g listener.ora
配置内容方式1: LISTENER = (DESCRIPTION_LIST = (DESCRIPTION = (ADDRESS = (PROTOCOL = IPC) (KEY = EXTPROC152 ...