http://www.lydsy.com/JudgeOnline/problem.php?id=4196

https://www.luogu.org/problemnew/show/P2146

你决定设计你自己的软件包管理器。不可避免地,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m≥2)个软件包A1,A2,A3,⋯,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,A[m-1]依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。

现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。

题面很长,耐心看完就知道这是道树剖的板子题。

(然而不会求子树和的我还是去看了题解)

我们把安装的权值为1,未安装为0。

对于下载操作只需要查询该点到根节点的路程-1的个数。

对于卸载操作只需要查询该点的子树的1的个数。

(当然别忘了二者的修改。)

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=2e5+;
const int INF=;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){w|=ch=='-';ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}edge[*N];
struct tree{
int lazy,sum;
}t[*N];
int head[N],cnt,tot,n;
inline void add(int u,int v){
edge[++cnt].to=v;edge[cnt].nxt=head[u];head[u]=cnt;
}
int fa[N],dep[N],size[N],son[N],top[N],pos[N],idx[N];
void dfs1(int u){
size[u]=;
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa[u])continue;
fa[v]=u;dep[v]=dep[u]+;
dfs1(v);
size[u]+=size[v];
if(!son[u]||size[v]>size[son[u]])son[u]=v;
}
return;
}
void dfs2(int u,int anc){
tot++;
pos[u]=tot;
idx[tot]=u;
top[u]=anc;
if(!son[u])return;
dfs2(son[u],anc);
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa[u]||v==son[u])continue;
dfs2(v,v);
}
return;
}
inline void pushdown(int a,int l,int r){
int mid=(l+r)>>;
if(t[a].lazy!=-){
t[a*].lazy=t[a*+].lazy=t[a].lazy;
t[a*].sum=t[a].lazy*(mid-l+);
t[a*+].sum=t[a].lazy*(r-mid);
t[a].lazy=-;
}
return;
}
void modify(int a,int l,int r,int l1,int r1,int v){
if(r1<l||r<l1)return;
if(l1<=l&&r<=r1){
t[a].sum=v*(r-l+);
t[a].lazy=v;
return;
}
int mid=(l+r)>>;
pushdown(a,l,r);
modify(a*,l,mid,l1,r1,v);
modify(a*+,mid+,r,l1,r1,v);
t[a].sum=t[a*].sum+t[a*+].sum;
return;
}
void pathmodify(int u,int v,int c){
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]){int t=u;u=v;v=t;}
modify(,,n,pos[top[u]],pos[u],c);
u=fa[top[u]];
}
if(dep[u]>dep[v]){int t=u;u=v;v=t;}
modify(,,n,pos[u],pos[v],c);
return;
}
inline void nodemodify(int u,int c){
modify(,,n,pos[u],pos[u]+size[u]-,c);
}
int query(int a,int l,int r,int l1,int r1){//线段树区间和
if(r1<l||l1>r)return ;
if(l1<=l&&r<=r1)return t[a].sum;
int mid=(l+r)>>;
pushdown(a,l,r);
return query(a*,l,mid,l1,r1)+query(a*+,mid+,r,l1,r1);
}
int pathquery(int u,int v){//询问(u,v)这条路径的和
if(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]){int t=u;u=v;v=t;}
return pos[u]-pos[top[u]]+
+pathquery(fa[top[u]],v)-query(,,n,pos[top[u]],pos[u]);
}
if(dep[u]>dep[v]){int t=u;u=v;v=t;}
return pos[v]-pos[u]+-query(,,n,pos[u],pos[v]);
}
inline int nodequery(int u){
return query(,,n,pos[u],pos[u]+size[u]-);
}
void init(){
dep[]=fa[]=;
dfs1();
top[]=idx[]=pos[]=;
tot=;
dfs2(,);
for(int i=;i<*n;i++)t[i].lazy=-;
return;
}
int main(){
n=read();
for(int i=;i<=n;i++){
int v=read()+;
add(i,v);add(v,i);
}
init();
int q=read();
while(q--){
char op[];
scanf("%s",op);
int u=read()+;
if(op[]=='i'){
printf("%d\n",pathquery(u,));
pathmodify(u,,);
}
else{
printf("%d\n",nodequery(u));
nodemodify(u,);
}
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4196:[NOI2015]软件包管理器——题解的更多相关文章

  1. [UOJ#128][BZOJ4196][Noi2015]软件包管理器

    [UOJ#128][BZOJ4196][Noi2015]软件包管理器 试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管 ...

  2. [BZOJ4196][NOI2015]软件包管理器(树链剖分)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2166  Solved: 1253[Submit][Sta ...

  3. [BZOJ4196][NOI2015]软件包管理器

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1040  Solved: 603[Submit][Stat ...

  4. 【NOI2015】【BZOJ4196】软件包管理器 - 题解

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  5. [bzoj4196][Noi2015]软件包管理器_树链剖分_线段树

    软件包管理器 bzoj-4196 Noi-2015 题目大意:Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件 ...

  6. BZOJ4196 [Noi2015]软件包管理器 【树剖】

    题目 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件 ...

  7. BZOJ4196[Noi2015]软件包管理器——树链剖分+线段树

    题目描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个 ...

  8. BZOJ4196: [Noi2015]软件包管理器(树链剖分)

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  9. [Noi2015]软件包管理器 题解

    题目大意: 有n个软件安装包,除第一个以外,其他的要在另一个安装包的基础上安装,且无环,问在安装和卸载某个软件包时,这个操作实际上会改变多少个软件包的安装状态. 思路: 可构成树,用树链剖分,线段树. ...

随机推荐

  1. letsencrypt证书-管理工具certbot

    目录 1. 安装certbot 2. certbot 介绍 3. 插件的具体使用 3.1 webroot 3.2 standalone 3.3 DNS plugins 3.4 manual 4. 证书 ...

  2. gitlab改root密码

    1. ~$ sudo gitlab-rails console production 2.查询要改的用户 irb(main)::> u = User.where().first => #& ...

  3. Android 9 Pie震撼来袭 同步登陆WeTest

    WeTest 导读 2018年8月7日,Google对外发布最新 Android 9.0 正式版系统,并宣布系统版本Android P 被正式命名为代号“Pie”,最新系统已经正式推送包括谷歌Pixe ...

  4. 多台服务器下同步文件夹数据(rsync+inotify)

    网上有很多讲解rsync+inotify的教程,我就先贴出一个来大家去看吧,基本都是类似的. http://www.jb51.net/article/57011.htm 我就强调几点,按照上面的方法配 ...

  5. 「日常温习」Hungary算法解决二分图相关问题

    前言 二分图的重点在于建模.以下的题目大家可以清晰的看出来这一点.代码相似度很高,但是思路基本上是各不相同. 题目 HDU 1179 Ollivanders: Makers of Fine Wands ...

  6. 域名添加www之后(或域名后加端口)无法访问(阿里云服务器)

    当时在阿里云服务器上部署了一个api接口,通过APP调用一直很正常,突然无法访问了,然后测试调查发现,只要在域名前加上www,再通过域名加端口的方式访问的话, 显示的都是 :502 错误:还一直以为是 ...

  7. SpringMVC+mybatis+maven+Ehcache缓存实现

    所谓缓存,就是将程序或系统经常要调用的对象存在内存中,以便其使用时可以快速调用,不必再去创建新的重复的实例.这样做可以减少系统开销,提高系统效率. 缓存主要可分为二大类: 一.通过文件缓存,顾名思义文 ...

  8. 【shell 练习5】编写简单的多级菜单

    一.简单的多级菜单 [root@web129 ~]# cat menu.sh #!/bin/bash #shell菜单演示 function menu() { echo -e `date` cat & ...

  9. 剑指offer-整数中1出现的次数27

    题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...

  10. 创新手机游戏《3L》开发点滴(1)——道具、物品、装备表设计

    一.游戏物品/道具系统数据模型设计特点 为了让游戏更加的丰富,我们1201团队的新手机游戏设计了道具系统.于是丰富了游戏.取悦了玩家,哭了开发——道具/物品数据子系统是简单的.复杂的.不确定的: 简单 ...