Scikit-Learn库已经实现了所有基本机器学习的算法,可以直接调用里面库进行模型构建。

一、逻辑回归

大多数情况下被用来解决分类问题(二元分类),但多类的分类(所谓的一对多方法)也适用。这个算法的优点是对于每一个输出的对象都有一个对应类别的概率。

from sklearn import metrics
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

二、朴素贝叶斯

它也是最有名的机器学习的算法之一,它的主要任务是恢复训练样本的数据分布密度。这个方法通常在多类的分类问题上表现的很好。

from sklearn import metrics

from sklearn.naive_bayes import GaussianNB

model = GaussianNB()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

三、k-最近邻

kNN(k-最近邻)方法通常用于一个更复杂分类算法的一部分。例如,我们可以用它的估计值做为一个对象的特征。有时候,一个简单的kNN算法在良好选择的特征上会有很出色的表现。当参数(主要是metrics)被设置得当,这个算法在回归问题中通常表现出最好的质量。

from sklearn import metrics

from sklearn.neighbors import KNeighborsClassifier

# fit a k-nearest neighbor model to the data

model = KNeighborsClassifier()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

四、决策树

分类和回归树(CART)经常被用于这么一类问题,在这类问题中对象有可分类的特征且被用于回归和分类问题。决策树很适用于多类分类。

from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier

# fit a CART model to the data

model = DecisionTreeClassifier()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

五、支持向量机

SVM(支持向量机)是最流行的机器学习算法之一,它主要用于分类问题。同样也用于逻辑回归,SVM在一对多方法的帮助下可以实现多类分类。

from sklearn import metrics

from sklearn.svm import SVC

# fit a SVM model to the data

model = SVC()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

除了分类和回归问题,Scikit-Learn还有海量的更复杂的算法,包括了聚类, 以及建立混合算法的实现技术,如Bagging和Boosting。

python进行机器学习(三)之模型选择与构建的更多相关文章

  1. 偏差(Bias)和方差(Variance)——机器学习中的模型选择zz

    模型性能的度量 在监督学习中,已知样本 ,要求拟合出一个模型(函数),其预测值与样本实际值的误差最小. 考虑到样本数据其实是采样,并不是真实值本身,假设真实模型(函数)是,则采样值,其中代表噪音,其均 ...

  2. 用python+sklearn(机器学习)实现天气预报数据 模型和使用

    用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型 ...

  3. 用python+sklearn(机器学习)实现天气预报数据 数据

    用python+sklearn机器学习实现天气预报 数据 项目地址 系列教程 勘误表 0.前言 1.爬虫 a.确认要被爬取的网页网址 b.爬虫部分 c.网页内容匹配取出部分 d.写入csv文件格式化 ...

  4. 用python+sklearn(机器学习)实现天气预报 准备

    用python+sklearn机器学习实现天气预报 准备 项目地址 系列教程 0.流程介绍 1. 环境搭建 a.python b.涉及到的机器学习相关库 sklearn panda seaborn j ...

  5. python进行机器学习(四)之模型验证与参数选择

    一.模型验证 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 这里我们将 ...

  6. 吴裕雄 python 机器学习——模型选择验证曲线validation_curve模型

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.da ...

  7. 吴裕雄 python 机器学习——模型选择学习曲线learning_curve模型

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.da ...

  8. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

  9. 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...

随机推荐

  1. GetTickCount 和getTickCount

    GetTickCount:正常读取时间函数 getTickCount:不知道是什么鬼东东函数 都包含在windows.h中..运行出的结果天壤之别~~~

  2. Delphi XE4 TStringHelper用法详解

    原文地址:Delphi XE4 TStringHelper用法详解作者:天下为公 Delphi XE4的TStringHelper,对操作字符串进一步带来更多的方法,估计XE5还能继续用到. Syst ...

  3. 从一个ListBox中的元素点击导入另一个ListBox元素中

    先看效果图:

  4. Qt编码设置

    1.Qt Creator -> 工具 -> 选项 -> 环境 - >概要 -> 语言    Qt Creator本身界面的语言选择,与cpp文件编码无关,与可执行文件显示 ...

  5. context.getResourceAsStream获取的是部署在服务器上面的文件位置 而不是我们本地的工程位置 意思是说获取的都是web下面的文件位置

    context.getResourceAsStream获取的是部署在服务器上面的文件位置 而不是我们本地的工程位置 意思是说获取的都是web下面的文件位置

  6. CodeChef LEMOVIE

    题意:给你n个数字(下标不同数值相同的数字应当被认为是不同的数字),有n!种排列方式.每种排列方式的价值定义为:第一次出现时比前面的所有数字都大的数值个数. 比如1,2,2,3这个排列中,1,2,3这 ...

  7. 【codevs1404】字符串匹配 KMP

    题目描述 给你两个串A,B,可以得到从A的任意位开始的子串和B匹配的长度.给定K个询问,对于每个询问给定一个x,求出匹配长度恰为x的位置有多少个.N,M,K<=200000 输入 第一行三个数 ...

  8. (四)Redis哈希表Hash操作

    Hash全部命令如下: hset key field value # 将哈希表key中的字段field的值设为value hget key field # 返回哈希表key中的字段field的值val ...

  9. POJ3264:Balanced Lineup——题解+st表解释

    我早期在csdn的博客之一,正好复习st表就拿过来.http://write.blog.csdn.net/mdeditor#!postId=63713810 这道题其实本身不难(前提是你得掌握线段树或 ...

  10. Manacher以及回文树算法学习

    Manacher以及回文树算法学习 一.Manacher 关于\(Manacher\),这篇博客 讲的很清楚. 大致总结一下 为了将长度为奇数的回文串和长度为偶数的回文串一起考虑,需要在原字符串中插入 ...