题解 【luoguP1967 NOIp提高组2013 货车运输】
题解
题意
- 给你一个无向图,求两个点之间的一条路径,使路径上的最小值最大
算法:Kruskal最大生成树+倍增lca
分析
- 首先容易知道,答案一定在该图的最大生成树上
- 之后问题便转换成了树上点\(u\)到\(v\)的简单路径42中最小的边权
- 经典的树上倍增
- 用fa[i][j]来表示从第\(i\)个点往上\(2^j\)条边到达的点
- 用s[i][j]来表示从第\(i\)个点往上\(2^j\)条边中的最小值
- 答案就是在求lca的过程中统计一下最小值就可以了(具体详见代码)
复杂度:
Kruskal \(O(m \log m)\)
倍增 \(O(n \log n)\)
总复杂度 \(O(n \log n + m \log m)\)
代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 50050;
int n, m, q;
int p[MAXN];
int dep[MAXN], vis[MAXN], fa[MAXN][20], s[MAXN][20];
struct Edge
{
int u, v, w;
bool operator < (const Edge &_edge) const
{
return w > _edge.w;
}
}edge[MAXN];
int ecnt;
struct node
{
int v, w;
node *next;
}pool[MAXN], *head[MAXN];
void addedge(int u, int v, int w)
{
node *p = &pool[++ecnt], *q = &pool[++ecnt];
p->v = v, p->w = w, p->next = head[u], head[u] = p;
q->v = u, q->w = w, q->next = head[v], head[v] = q;
}
int find(int x)
{
if(p[x] == 0) return x;
else return p[x] = find(p[x]);
}
bool Union(int x, int y)
{
int px = find(x);
int py = find(y);
if(px == py)
return false;
p[px] = py;
return true;
}
void dfs(int u)
{
int v;
vis[u] = 1;
for(node *p = head[u]; p; p = p->next)
if(!vis[v = p->v])
{
dep[v] = dep[u] + 1;
fa[v][0] = u;
s[v][0] = p->w;
for(int j = 1; fa[v][j - 1] != 0; j++)
fa[v][j] = fa[fa[v][j - 1]][j - 1],
s[v][j] = min(s[v][j - 1], s[fa[v][j - 1]][j - 1]);
//预处理
dfs(v);
}
}
int query(int u, int v)//倍增
{
int ret = 2147483647;//返回值。因为求最小,所以初始赋最大
if(dep[u] < dep[v]) swap(u, v);
for(int i = 15; i >= 0; i--)
if(fa[u][i] != 0 && dep[fa[u][i]] >= dep[v])
ret = min(ret, s[u][i]), u = fa[u][i];//一定要先统计最小值
if(u == v) return ret;
for(int i = 15; i >= 0; i--)
if(fa[u][i] != fa[v][i])
ret = min(ret, min(s[u][i], s[v][i])), //统计最小
u = fa[u][i],
v = fa[v][i];
ret = min(ret, min(s[u][0], s[v][0]));//不要忘了最后还有两条边
return ret;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; i++)
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
sort(edge + 1, edge + m + 1);
for(int i = 1; i <= m; i++)
if(Union(edge[i].u, edge[i].v))
addedge(edge[i].u, edge[i].v, edge[i].w);
dfs(1);
scanf("%d", &q);
for(int i = 1; i <= q; i++)
{
int u, v;
scanf("%d%d", &u, &v);
if(find(u) != find(v))
{
printf("-1\n");
continue ;
}
printf("%d\n", query(u, v));
}
return 0;
}
题解 【luoguP1967 NOIp提高组2013 货车运输】的更多相关文章
- NOIP提高组 2013货车运输
觉得题目水的离开 不屑的大佬请离开 不会图论的请离开 ……. 感谢您贡献的访问量 ————————————华丽的分割线———————————— 题面: 题目描述 A 国有 n 座城市,编号从 1 到 ...
- 【NOIP】提高组2013 货车运输
[算法]最大生成树+LCA(倍增) [题解]两点间选择一条路径最小值最大的路径,这条路径一定在最大生成树上,因为最大生成树就是从边权最大的边开始加的. 先求原图的最大生成树(森林),重新构图,然后用一 ...
- 洛谷P1967 [NOIP2013提高组Day1T2]货车运输
P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...
- 【NOIP2013提高组】货车运输
货车运输 (truck.cpp/c/pas) [问题描述] A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有q辆货车在运输货物,司机们想知道每辆 ...
- 洛谷P1966 火柴排队[NOIP提高组2013]
我确信我应该是做过这道题……就当再写一遍好了. 贪心思想,一番证明得出a和b数组中最小对最小,次小对次小……时解最优.那么先处理出a,b之间的对应关系,然后按照该关系求a或者b的逆序对数量就是答案 / ...
- NOIP提高组2013 D2T3 【华容道】
某王 老师给我们考了一场noip2013的真题...心态爆炸! 题目大意: 有一个n*m的棋盘,每个格子上都有一个棋子,有些格子上的棋子能够移动(可移动的棋子是固定的),棋盘中有一个格子是空的,仍何 ...
- NOIP 2013 货车运输【Kruskal + 树链剖分 + 线段树 】【倍增】
NOIP 2013 货车运输[树链剖分] 树链剖分 题目描述 Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在 ...
- NOIP提高组2004 合并果子题解
NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...
- NOIP提高组历年真题题解
2018 铺设道路 差分水题,推一下结论就好了. #include<cstdio> #include<algorithm> using namespace std; ],d[] ...
随机推荐
- jupyter notebook 使用cmd命令窗口打开
第一步:将文件路径改为你需要使用文件所在的路径 第二部: jupyter notebook
- 利用人脸特征提取DeepID--解读世纪晟人脸识别
概述:DeepID的目标是人脸验证(判断两张图片是否是一个人),同时衍生出人脸识别(多次人脸验证). DeepID采用增大数据集的方法: 增加新的数据,celebFaces(87628张图片,5436 ...
- 基于MTCNN多任务级联卷积神经网络进行的人脸识别 世纪晟人脸检测
神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多 ...
- Phpcms V9导航循环下拉菜单的调用技巧
这个方法基于PC V9官方模版中的调用方法,然后利用后台的“Phpcms V9菜单是否显示设置”控制菜单是否显示出来. 先看看最后的效果: 调用方法: <div id="navbar& ...
- Ubuntu 配置 ftp freemind adb
. 1. 配置apt-get源 配置过程 : sudo vim /etc/profile 命令, 在后面添加下面的内容; 刷新配置文件 : source /etc/profie 命令; 刷新源 : s ...
- 阿里云服务器 操作实战 部署C语言开发环境(vim配置,gcc) 部署J2EE网站(jdk,tomcat)
. 作者 :万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/18964835 . 博客总结 : 设置SecureCRT ...
- SOA是什么为什么要面向服务编程
SOA(面向服务的架构),Service-Oriented Architecture,面向服务的体系结构. 也就是以服务为核心的架构.这里需要理解什么是服务. 比如你有一个读取通知的方法: publi ...
- 【week3】四则运算 单元测试
上一周的四则运算有bug,这次补充正确代码: // 中缀转后缀 public String[] SolveOrder(String[] in, HashMap<String, Integer&g ...
- Sqoop 1.4.6 安装配置
配置环境变量 # SQOOP SQOOP_HOME=/home/hadoop/development/src/sqoop-1.4.6-cdh5.6.0 PATH=$PATH:$SQOOP_HOME/b ...
- react项目开发入门
v16.2.0 在html头部引入react相关js文件 <!-- react核心库--><script src="../static/react/react.produc ...