洛谷P1755 斐波那契的拆分
题目背景
无
题目描述
已知任意一个正整数都可以拆分为若干个斐波纳契数,现在,让你求出n的拆分方法
输入输出格式
输入格式:
一个数t,表示有t组数据
接下来t行,每行一个数n(如题)
输出格式:
t行,每行一个字符串,表示拆分方法(格式:n=a1+a2+a3+..+an),要求从小到大输出
输入输出样例
input1:1
1
input2:1
10
output1:1=1
output2:10=2+8
说明
若有多组数据,以个数最小的为准,若仍有多组,输出右边尽量大的一组
对于100%的数据 t<=1000 1<=n<=10^9
小小DFS
/*By SilverN*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int T;
int n;
int a[];
bool DFS(int pos,int res,bool flag){
if(res==n){return ;}
if(!pos)return ;
for(int i=pos;i;i--){
if(res+a[i]>n)continue;
if(DFS(i-,res+a[i],)){
if(flag)printf("%d\n",a[i]);
else printf("%d+",a[i]);
return ;
}
}
return ;
}
int main(){
int i,j;
scanf("%d",&T);
a[]=;a[]=;
for(i=;i<;i++){
a[i]=a[i-]+a[i-];
// printf("%d\n",a[i]);
}
while(T--){
scanf("%d",&n);
printf("%d=",n);
DFS(,,);
}
return ;
}
洛谷P1755 斐波那契的拆分的更多相关文章
- 洛谷——P1755 斐波那契的拆分
P1755 斐波那契的拆分 题目背景 无 题目描述 已知任意一个正整数都可以拆分为若干个斐波纳契数,现在,让你求出n的拆分方法 输入输出格式 输入格式: 一个数t,表示有t组数据 接下来t行,每行一个 ...
- 洛谷 P1755 斐波那契的拆分
P1755 斐波那契的拆分 题目背景 无 题目描述 已知任意一个正整数都可以拆分为若干个斐波纳契数,现在,让你求出n的拆分方法 输入输出格式 输入格式: 一个数t,表示有t组数据 接下来t行,每行一个 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷 P1306 斐波那契公约数
洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...
- 洛谷P3938 斐波那契
题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷 P1306 斐波那契公约数 解题报告
P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...
- 洛谷——P2626 斐波那契数列(升级版)矩阵
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- 洛谷 P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
随机推荐
- 斯坦福大学 iOS 7应用开发 ppt
上网的找了很久都不全,最后发现原来网易那个视频下面就有完整的PPT..
- AMAP
ViewController.m #import "ViewController.h" //地图显示需要的头文件 #import <MAMapKit/MAMapKit.h&g ...
- S2--《深入.NET平台和C#编程》
第一章 深入.NET框架 1.1 Microsoft .NET框架概述 .NET框架的优势 * 提供了一个面向对象的编程环境,完全支持面向对象编程,.NET 框架提高了软件的可复用性,可扩展 ...
- NET Office 组件Spire
高效而稳定的企业级.NET Office 组件Spire 在项目开发中,尤其是企业的业务系统中,对文档的操作是非常多的,有时几乎给人一种错觉的是"这个系统似乎就是专门操作文档的" ...
- Ubuntu优化-py用机器
关闭防火墙 ufw disable pip换源 yum install python-pip -y mkdir ~/.pip cat > pip.conf<<a [global] i ...
- C语言 预处理二(宏定义--#define)
//#define 宏定义(宏定义一般大写) //知识点一-->#define的作用域:从#define开始,从上往下,如果遇到#undef就到#undef处结束,如果没有就是作用于当前整个文件 ...
- C# 延迟处理类 Lazy
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Lazy ...
- ajax中加上AntiForgeryToken防止CSRF攻击
经常看到在项目中ajax post数据到服务器不加防伪标记,造成CSRF攻击 在Asp.net Mvc里加入防伪标记很简单在表单中加入Html.AntiForgeryToken()即可. Html.A ...
- chrome http Request Header 修改插件
chrome http Request Header 修改插件 2013-05-31 11:03:03| 分类: JavaScript | 标签:chrome extensions chang ...
- 一道c语言运算符优先级问题
一道c语言运算符优先级问题 #include <iostream> using namespace std; int main() { char test[] = {"This ...