题目背景

题目描述

已知任意一个正整数都可以拆分为若干个斐波纳契数,现在,让你求出n的拆分方法

输入输出格式

输入格式:

一个数t,表示有t组数据

接下来t行,每行一个数n(如题)

输出格式:

t行,每行一个字符串,表示拆分方法(格式:n=a1+a2+a3+..+an),要求从小到大输出

输入输出样例

输入样例#1:

input1:1
1
input2:1
10
输出样例#1:

output1:1=1
output2:10=2+8

说明

若有多组数据,以个数最小的为准,若仍有多组,输出右边尽量大的一组

对于100%的数据 t<=1000 1<=n<=10^9

小小DFS

 /*By SilverN*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int T;
int n;
int a[];
bool DFS(int pos,int res,bool flag){
if(res==n){return ;}
if(!pos)return ;
for(int i=pos;i;i--){
if(res+a[i]>n)continue;
if(DFS(i-,res+a[i],)){
if(flag)printf("%d\n",a[i]);
else printf("%d+",a[i]);
return ;
}
}
return ;
}
int main(){
int i,j;
scanf("%d",&T);
a[]=;a[]=;
for(i=;i<;i++){
a[i]=a[i-]+a[i-];
// printf("%d\n",a[i]);
}
while(T--){
scanf("%d",&n);
printf("%d=",n);
DFS(,,);
}
return ;
}

洛谷P1755 斐波那契的拆分的更多相关文章

  1. 洛谷——P1755 斐波那契的拆分

    P1755 斐波那契的拆分 题目背景 无 题目描述 已知任意一个正整数都可以拆分为若干个斐波纳契数,现在,让你求出n的拆分方法 输入输出格式 输入格式: 一个数t,表示有t组数据 接下来t行,每行一个 ...

  2. 洛谷 P1755 斐波那契的拆分

    P1755 斐波那契的拆分 题目背景 无 题目描述 已知任意一个正整数都可以拆分为若干个斐波纳契数,现在,让你求出n的拆分方法 输入输出格式 输入格式: 一个数t,表示有t组数据 接下来t行,每行一个 ...

  3. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  4. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

  5. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  6. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  7. 洛谷 P1306 斐波那契公约数 解题报告

    P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...

  8. 洛谷——P2626 斐波那契数列(升级版)矩阵

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  9. 洛谷 P2626 斐波那契数列(升级版)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

随机推荐

  1. Android Studio系列教程六--Gradle多渠道打包

    Android Studio系列教程六--Gradle多渠道打包 2015 年 01 月 15 日 DevTools 本文为个人原创,欢迎转载,但请务必在明显位置注明出处!http://stormzh ...

  2. 12个JavaScript技巧

    转自:http://web.jobbole.com/86146/ 在这篇文章中将给大家分享12个有关于JavaScript的小技巧.这些小技巧可能在你的实际工作中或许能帮助你解决一些问题. 使用!!操 ...

  3. 12Spring_AOP编程(AspectJ)_前置通知

    接下里的博客会一篇一篇的讲解每一个通知.其实AOP_AspectJ的编程与传统的AOP的编程的最大的区别就是写一个Aspect 支持多个Advice和多个PointCut .而且我们写AOP_Aspc ...

  4. 静态时序分析(static timing analysis) --- 时序路径

    时序分析工具会找到且分析设计中的所有路径.每一个路径有一个起点(startpoint)和一个终点(endpoint).起点是设计中数据被时钟沿载入的那个时间点,而终点则是数据通过了组合逻辑被另一个时间 ...

  5. py变量

        1, python以数据为主 x=2,是给数据2开辟了个空间, X指向了2 y=x ,即y指向了2 x=5 ,x重新赋值 但是y依旧是原来的

  6. C#中的bitmap类和图像像素值获取方法

    一.Bitmap类 Bitmap对象封装了GDI+中的一个位图,此位图由图形图像及其属性的像素数据组成.因此Bitmap是用于处理由像素数据定义的图像的对象.该类的主要方法和属性如下: 1. GetP ...

  7. linux下gcc编译多个源文件、gdb的使用方法

    一. gcc常用编译命令选项 假设源程序文件名为test.c. 1. 无选项编译链接 用法:#gcc test.c 作用:将test.c预处理.汇编.编译并链接形成可执行文件.这里未指定输出文件,默认 ...

  8. 20145208实验一 Java开发环境的熟悉

    20145208实验一 Java开发环境的熟悉 使用JDK编译.运行简单的java程序 命令行下程序开发 在命令行下建立实验目录,然后创建并进入该目录后的子目录. 编译并运行一个代码 使用IDEA 编 ...

  9. 20145303 20145339 《信息安全系统设计基础》 实验五 简单嵌入式WEB服务器实验

    20145303 20145339 <信息安全系统设计基础> 实验五 简单嵌入式WEB服务器实验 实验目的与要求 1.掌握在ARM开发板实现一个简单WEB服务器的过程 2.学习在ARM开发 ...

  10. SQL Server 收缩日志

    一. SQL Server 2008 收缩日志 (1) 使用SQL管理器收缩日志 第一步执行如下命令 ALTER DATABASE platform SET RECOVERY SIMPLE GO 第二 ...