概要

前面分别通过CC++实现了二叉堆,本章给出二叉堆的Java版本。还是那句话,它们的原理一样,择其一了解即可。

目录
1. 二叉堆的介绍
2. 二叉堆的图文解析
3. 二叉堆的Java实现(完整源码)
4. 二叉堆的Java测试程序

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3610390.html


更多内容:数据结构与算法系列 目录

(01) 二叉堆(一)之 图文解析 和 C语言的实现
(02) 二叉堆(二)之 C++的实现
(03) 二叉堆(三)之 Java的实

二叉堆的介绍

二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。

二叉堆一般都通过"数组"来实现,下面是数组实现的最大堆和最小堆的示意图:

二叉堆的图文解析

图文解析是以"最大堆"来进行介绍的。
最大堆的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍,其它内容请参考后面的完整源码。

1. 添加

假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:

如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。

最大堆的插入代码(Java语言)

/*
* 最大堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
protected void filterup(int start) {
int c = start; // 当前节点(current)的位置
int p = (c-1)/2; // 父(parent)结点的位置
T tmp = mHeap.get(c); // 当前节点(current)的大小 while(c > 0) {
int cmp = mHeap.get(p).compareTo(tmp);
if(cmp >= 0)
break;
else {
mHeap.set(c, mHeap.get(p));
c = p;
p = (p-1)/2;
}
}
mHeap.set(c, tmp);
} /*
* 将data插入到二叉堆中
*/
public void insert(T data) {
int size = mHeap.size(); mHeap.add(data); // 将"数组"插在表尾
filterup(size); // 向上调整堆
}

insert(data)的作用:将数据data添加到最大堆中。mHeap是动态数组ArrayList对象。
当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。

2. 删除

假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:

如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。

注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!

二叉堆的删除代码(Java语言)

/*
* 最大堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
protected void filterdown(int start, int end) {
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
T tmp = mHeap.get(c); // 当前(current)节点的大小 while(l <= end) {
int cmp = mHeap.get(l).compareTo(mHeap.get(l+1));
// "l"是左孩子,"l+1"是右孩子
if(l < end && cmp<0)
l++; // 左右两孩子中选择较大者,即mHeap[l+1]
cmp = tmp.compareTo(mHeap.get(l));
if(cmp >= 0)
break; //调整结束
else {
mHeap.set(c, mHeap.get(l));
c = l;
l = 2*l + 1;
}
}
mHeap.set(c, tmp);
} /*
* 删除最大堆中的data
*
* 返回值:
* 0,成功
* -1,失败
*/
public int remove(T data) {
// 如果"堆"已空,则返回-1
if(mHeap.isEmpty() == true)
return -1; // 获取data在数组中的索引
int index = mHeap.indexOf(data);
if (index==-1)
return -1; int size = mHeap.size();
mHeap.set(index, mHeap.get(size-1));// 用最后元素填补
mHeap.remove(size - 1); // 删除最后的元素 if (mHeap.size() > 1)
filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆 return 0;
}

二叉堆的Java实现(完整源码)

二叉堆的实现同时包含了"最大堆"和"最小堆"。
二叉堆(最大堆)的实现文件(MaxHeap.java)

 /**
* 二叉堆(最大堆)
*
* @author skywang
* @date 2014/03/07
*/ import java.util.ArrayList;
import java.util.List; public class MaxHeap<T extends Comparable<T>> { private List<T> mHeap; // 队列(实际上是动态数组ArrayList的实例) public MaxHeap() {
this.mHeap = new ArrayList<T>();
} /*
* 最大堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
protected void filterdown(int start, int end) {
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
T tmp = mHeap.get(c); // 当前(current)节点的大小 while(l <= end) {
int cmp = mHeap.get(l).compareTo(mHeap.get(l+1));
// "l"是左孩子,"l+1"是右孩子
if(l < end && cmp<0)
l++; // 左右两孩子中选择较大者,即mHeap[l+1]
cmp = tmp.compareTo(mHeap.get(l));
if(cmp >= 0)
break; //调整结束
else {
mHeap.set(c, mHeap.get(l));
c = l;
l = 2*l + 1;
}
}
mHeap.set(c, tmp);
} /*
* 删除最大堆中的data
*
* 返回值:
* 0,成功
* -1,失败
*/
public int remove(T data) {
// 如果"堆"已空,则返回-1
if(mHeap.isEmpty() == true)
return -1; // 获取data在数组中的索引
int index = mHeap.indexOf(data);
if (index==-1)
return -1; int size = mHeap.size();
mHeap.set(index, mHeap.get(size-1));// 用最后元素填补
mHeap.remove(size - 1); // 删除最后的元素 if (mHeap.size() > 1)
filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆 return 0;
} /*
* 最大堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
protected void filterup(int start) {
int c = start; // 当前节点(current)的位置
int p = (c-1)/2; // 父(parent)结点的位置
T tmp = mHeap.get(c); // 当前节点(current)的大小 while(c > 0) {
int cmp = mHeap.get(p).compareTo(tmp);
if(cmp >= 0)
break;
else {
mHeap.set(c, mHeap.get(p));
c = p;
p = (p-1)/2;
}
}
mHeap.set(c, tmp);
} /*
* 将data插入到二叉堆中
*/
public void insert(T data) {
int size = mHeap.size(); mHeap.add(data); // 将"数组"插在表尾
filterup(size); // 向上调整堆
} @Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (int i=0; i<mHeap.size(); i++)
sb.append(mHeap.get(i) +" "); return sb.toString();
} public static void main(String[] args) {
int i;
int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
MaxHeap<Integer> tree=new MaxHeap<Integer>(); System.out.printf("== 依次添加: ");
for(i=0; i<a.length; i++) {
System.out.printf("%d ", a[i]);
tree.insert(a[i]);
} System.out.printf("\n== 最 大 堆: %s", tree); i=85;
tree.insert(i);
System.out.printf("\n== 添加元素: %d", i);
System.out.printf("\n== 最 大 堆: %s", tree); i=90;
tree.remove(i);
System.out.printf("\n== 删除元素: %d", i);
System.out.printf("\n== 最 大 堆: %s", tree);
System.out.printf("\n");
}
}

二叉堆(最小堆)的实现文件(MinHeap.java)

 /**
* 二叉堆(最小堆)
*
* @author skywang
* @date 2014/03/07
*/ import java.util.ArrayList;
import java.util.List; public class MinHeap<T extends Comparable<T>> { private List<T> mHeap; // 存放堆的数组 public MinHeap() {
this.mHeap = new ArrayList<T>();
} /*
* 最小堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
protected void filterdown(int start, int end) {
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
T tmp = mHeap.get(c); // 当前(current)节点的大小 while(l <= end) {
int cmp = mHeap.get(l).compareTo(mHeap.get(l+1));
// "l"是左孩子,"l+1"是右孩子
if(l < end && cmp>0)
l++; // 左右两孩子中选择较小者,即mHeap[l+1] cmp = tmp.compareTo(mHeap.get(l));
if(cmp <= 0)
break; //调整结束
else {
mHeap.set(c, mHeap.get(l));
c = l;
l = 2*l + 1;
}
}
mHeap.set(c, tmp);
} /*
* 最小堆的删除
*
* 返回值:
* 成功,返回被删除的值
* 失败,返回null
*/
public int remove(T data) {
// 如果"堆"已空,则返回-1
if(mHeap.isEmpty() == true)
return -1; // 获取data在数组中的索引
int index = mHeap.indexOf(data);
if (index==-1)
return -1; int size = mHeap.size();
mHeap.set(index, mHeap.get(size-1));// 用最后元素填补
mHeap.remove(size - 1); // 删除最后的元素 if (mHeap.size() > 1)
filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆 return 0;
} /*
* 最小堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
protected void filterup(int start) {
int c = start; // 当前节点(current)的位置
int p = (c-1)/2; // 父(parent)结点的位置
T tmp = mHeap.get(c); // 当前节点(current)的大小 while(c > 0) {
int cmp = mHeap.get(p).compareTo(tmp);
if(cmp <= 0)
break;
else {
mHeap.set(c, mHeap.get(p));
c = p;
p = (p-1)/2;
}
}
mHeap.set(c, tmp);
} /*
* 将data插入到二叉堆中
*/
public void insert(T data) {
int size = mHeap.size(); mHeap.add(data); // 将"数组"插在表尾
filterup(size); // 向上调整堆
} public String toString() {
StringBuilder sb = new StringBuilder();
for (int i=0; i<mHeap.size(); i++)
sb.append(mHeap.get(i) +" "); return sb.toString();
} public static void main(String[] args) {
int i;
int a[] = {80, 40, 30, 60, 90, 70, 10, 50, 20};
MinHeap<Integer> tree=new MinHeap<Integer>(); System.out.printf("== 依次添加: ");
for(i=0; i<a.length; i++) {
System.out.printf("%d ", a[i]);
tree.insert(a[i]);
} System.out.printf("\n== 最 小 堆: %s", tree); i=15;
tree.insert(i);
System.out.printf("\n== 添加元素: %d", i);
System.out.printf("\n== 最 小 堆: %s", tree); i=10;
tree.remove(i);
System.out.printf("\n== 删除元素: %d", i);
System.out.printf("\n== 最 小 堆: %s", tree);
System.out.printf("\n");
}
}

二叉堆的Java测试程序

测试程序已经包含在相应的实现文件中了,这里只说明运行结果。

最大堆(MaxHeap.java)的运行结果:

== 依次添加: 10 40 30 60 90 70 20 50 80
== 最 大 堆: 90 80 70 60 40 30 20 10 50
== 添加元素: 85
== 最 大 堆: 90 85 70 60 80 30 20 10 50 40
== 删除元素: 90
== 最 大 堆: 85 80 70 60 40 30 20 10 50

最小堆(MinHeap.java)的运行结果:

== 最 小 堆: 10 20 30 50 90 70 40 80 60
== 添加元素: 15
== 最 小 堆: 10 15 30 50 20 70 40 80 60 90
== 删除元素: 10
== 最 小 堆: 15 20 30 50 90 70 40 80 60

PS. 二叉堆是"堆排序"的理论基石。以后讲解算法时会讲解到"堆排序",理解了"二叉堆"之后,"堆排序"就很简单了。

二叉堆(三)之 Java的实现的更多相关文章

  1. 关于博主skywang123456文章——二叉堆(三)之 Java的实现的质疑

    博客园博主skywang123456(以下简称s博主)是一个大牛级的人物,相信很多程序员都拜读过他的博客,我也不例外,并且受益匪浅.但是对于文章二叉堆(三)之 Java的实现我有一些疑惑,写在这里,供 ...

  2. 二项堆(三)之 Java的实现

    概要 前面分别通过C和C++实现了二项堆,本章给出二项堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 二项树的介绍2. 二项堆的介绍3. 二项堆的基本操作4. 二项堆的 ...

  3. 二叉堆(一)之 图文解析 和 C语言的实现

    概要 本章介绍二叉堆,二叉堆就是通常我们所说的数据结构中"堆"中的一种.和以往一样,本文会先对二叉堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本 ...

  4. 二叉堆(二)之 C++的实现

    概要 上一章介绍了堆和二叉堆的基本概念,并通过C语言实现了二叉堆.本章是二叉堆的C++实现. 目录1. 二叉堆的介绍2. 二叉堆的图文解析3. 二叉堆的C++实现(完整源码)4. 二叉堆的C++测试程 ...

  5. 【nodejs原理&源码杂记(8)】Timer模块与基于二叉堆的定时器

    目录 一.概述 二. 数据结构 2.1 链表 2.2 二叉堆 三. 从setTimeout理解Timer模块源码 3.1 timers.js中的定义 3.2 Timeout类定义 3.3 active ...

  6. 纯数据结构Java实现(6/11)(二叉堆&优先队列)

    堆其实也是树结构(或者说基于树结构),一般可以用堆实现优先队列. 二叉堆 堆可以用于实现其他高层数据结构,比如优先队列 而要实现一个堆,可以借助二叉树,其实现称为: 二叉堆 (使用二叉树表示的堆). ...

  7. 二叉堆的构建(Java)

    package com.rao.linkList; /** * @author Srao * @className BinaryHeap * @date 2019/12/3 14:14 * @pack ...

  8. 二叉堆的介绍和Java实现

    一.堆和二叉堆 堆,英文名称Heap,所谓二叉堆(也有直接称二叉堆为堆的),本质上是一个完全二叉树,前面也提到过,如果树接近于完全二叉树或者满二叉树,采用顺序存储代价会小一点,因此常见的二叉堆均是顺序 ...

  9. Java实现的二叉堆以及堆排序详解

    一.前言 二叉堆是一个特殊的堆,其本质是一棵完全二叉树,可用数组来存储数据,如果根节点在数组的下标位置为1,那么当前节点n的左子节点为2n,有子节点在数组中的下标位置为2n+1.二叉堆类型分为最大堆( ...

随机推荐

  1. HTML之总结

    基础结构 基础标签有HTML,head,body. 合格的的HTML页面: <!DOCTYPE html> <html lang="en"> <hea ...

  2. 通过weburl 启动windows程序

    1. 注册表修改 建立一个reg文件 执行导入  以RunLocal协议为例子 Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\RunL ...

  3. AngularJS中的http拦截

    $http服务允许我们与服务端交互,有时候我们希望在发出请求之前以及收到响应之后做些事情.即http拦截. $httpProvider包含了一个interceptors的数组. 我们这样创建一个int ...

  4. js遍历jsonTree

    var json = [{tcName:"11", children:[{tcName:"22", children:[{tcName:"33&quo ...

  5. 如何开发Domino中的WebService

    在domino中写webservice可以使用LotusScript,也可以使用java,由于LotusScript API提供的功能多数都是操作domino数据库中文档的,在web service中 ...

  6. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

  7. 用户管理 之 在Linux系统中,批量添加用户的操作流程

    一.阅读此文件您需要掌握的基础知识: <Linux 用户(user)和用户组(group)管理概述><用户(user)和用户组(group)配置文件详解><Linux 用 ...

  8. TCP/IP 网络编程 (三)

    server端未处理高并发请求通常採用例如以下方式: 多进程:通过创建多个进程提供服务 多路复用:通过捆绑并统一管理 I/O 对象提供服务 多线程:通过生成和客户端等量的线程提供服务 多进程serve ...

  9. 怎么删除github上的仓库

    1.到你的个人中心.点击你的个人账号.下图的红色部分 2.点击repositories(仓库),选择你要删除的项目 3.code这一行导航栏 最后的一个. setting 4.下拉页面到最下面 Del ...

  10. Fixed error when submitting assignments in Machine Learning on Coursera

    Environment: OS: OSX 10.8.5 Matlab: R2013a(8.1.0.604) 64bit   How to fix: In file submit.m, line 129 ...