Lifting the Stone

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. 
 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. 
 

Output

Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 
 

Sample Input

2 4 5 0 0 5 -5 0 0 -5 4 1 1 11 1 11 11 1 11
 

Sample Output

0.00 0.00 6.00 6.00
 
 
就是简单求多边形的重心问题,数学问题。
#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
double x0,y0,x1,y1,x2,y2;
double s=0.0,sx=0.0,sy=0.0,area;
scanf("%lf%lf%lf%lf",&x0,&y0,&x1,&y1);
for(int i=;i<n-;i++)
{
scanf("%lf%lf",&x2,&y2);
area=(x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
sx+=area*(x0+x1+x2);
sy+=area*(y0+y1+y2);
s+=area;
x1=x2;
y1=y2;
// cout<<"dd"<<area<<endl; }
//cout<<s<<endl;
printf("%.2lf %.2lf\n",sx/s/,sy/s/);
}
return ;
}
附加两篇大神的博客,第一个是详细解释了poj1185 的算法,清晰明了
第二篇说的是求多边形重心的其他情况。
http://www.cnblogs.com/jbelial/archive/2011/08/08/2131165.html
 
 
http://www.cnblogs.com/bo-tao/archive/2011/08/16/2141395.html

poj 1115 Lifting the Stone 计算多边形的中心的更多相关文章

  1. POJ 1385 Lifting the Stone (多边形的重心)

    Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...

  2. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. hdu 1115 Lifting the Stone 多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. Lifting the Stone(hdu1115)多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  5. hdu 1115 Lifting the Stone (数学几何)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  7. [POJ 1385] Lifting the Stone (计算几何)

    题目链接:http://poj.org/problem?id=1385 题目大意:给你一个多边形的点,求重心. 首先,三角形的重心: ( (x1+x2+x3)/3 , (y1+y2+y3)/3 ) 然 ...

  8. Hdoj 1115.Lifting the Stone 题解

    Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...

  9. POJ 3907 Build Your Home | 计算多边形面积

    给个多边形 计算面积 输出要四舍五入 直接用向量叉乘就好 四舍五入可以+0.5向下取整 #include<cstdio> #include<algorithm> #includ ...

随机推荐

  1. TCP同步与异步及阻塞模式,多线程+阻塞模式,非阻塞模式简单介绍

    首先我简单介绍一下同步TCP编程 与异步TCP编程. 在服务端我们通常用一个TcpListener来监听一个IP和端口.客户端来一个请求的连接,在服务端可以用同步的方式来接收,也可以用异步的方式去接收 ...

  2. 基础知识《二》java的基本类型

    一.java基本数据类型 Java基本类型共有八种,基本类型可以分为三类,字符类型char,布尔类型boolean以及数值类型byte.short.int.long.float.double.数值类型 ...

  3. Hydra---Linux下的暴力美学

    引自:http://www.cnblogs.com/mchina/archive/2013/01/01/2840815.html 安装:http://www.91ri.org/2867.html yu ...

  4. python - easy_install的安装和使用

    为什么要装easy_install?正常情况下,我们要给Python安装第三方的扩展包,我们必须下载压缩包,解压缩到一个目录,然后命令行或者终端打开这个目录,然后执行python setup.py i ...

  5. 42.旋转数组的最小元素[Get min value of rotated array]

    [题目] 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个排好序的数组的一个旋转,输出旋转数组的最小元素.例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5 ...

  6. hdu2089

    基本的数位dp #include <cstdio> #include <cstring> using namespace std; #define D(x) x ; int n ...

  7. auto_ptr浅析(转载)

    转载自http://www.cnblogs.com/qytan36/archive/2010/06/28/1766555.html auto_ptr是C++标准库中(<utility>)为 ...

  8. 转mysql复制主从集群搭建

    最近搭了个主从复制,中间出了点小问题,排查搞定,记录下来 1环境:虚拟机:OS:centos6.5Linux host2 2.6.32-431.el6.x86_64 #1 SMP Fri Nov 22 ...

  9. 解决 mysql 启动报错--发现系统错误2,系统找不到指定的文件

    HKEY_LOCAL_MACHINE-SYSTEM-CurrentControlSet-services-mysql(服务名)-ImagePath 更改为(自己的):"C:\Program ...

  10. windows 常用快捷键

    快捷键,学会就可以扔掉鼠标.      F1帮助              F2改名              F3搜索              F4地址              F5刷新     ...