poj 1176 Party Lamps
http://poj.org/problem?id=1176
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4023 | Accepted: 1386 |
Description
1 to N. The lamps are connected to four buttons:
button 1 -- when this button is pressed, all the lamps change their state: those that are ON are turned OFF and those that are OFF are turned ON.
button 2 -- changes the state of all the odd numbered lamps.
button 3 -- changes the state of all the even numbered lamps.
button 4 -- changes the state of the lamps whose number is of the form 3K+1 (with K >= 0), i.e., 1,4,7,...
There is a counter C which records the total number of button presses.
When the party starts, all the lamps are ON and the counter C is set to zero.
You are given the value of counter C and information on the final state of some of the lamps. Write a program to determine all the possible final configurations of the N lamps that are consistent with the given information, without repetitions.
Input
The first line contains the number N and the second line the final value of counter C. The third line lists the lamp numbers you are informed to be ON in the final configuration, separated by one space and terminated by the integer -1. The fourth line lists the lamp numbers you are informed to be OFF in the final configuration, separated by one space and terminated by the integer -1.
The parameters N and C are constrained by:
10 <= N <= 100
1 <= C <= 10000
The number of lamps you are informed to be ON, in the final configuration, is less than or equal to 2.The number of lamps you are informed to be OFF, in the final configuration, is less than or equal to 2.
Output
Sample Input
10
1
-1
7 -1
Sample Output
0000000000
0101010101
0110110110
分析:
题意:对于一串彩灯,提供四种改变彩灯状态(ON<=>OFF)的操作:a.改变所有彩灯状态;b.改变奇数彩灯状态;c.改变偶数彩灯状态;d.改变3k+1号彩灯状态(1,4,7,10...)。
给定彩灯数目,操作次数,和对于某几个彩灯必须为ON、某几个彩灯必须为OFF的要求,问经过给定次数的操作,最终能达到的满足要求的状态有多少种,输出所有满足要求的彩灯状态。
原题中操作次数是1<=C<=10000的,如果以此为搜索深度,时间复杂度相当可观。
转换思路:
当按第一种操作时 :奇偶全变
当按第二种操作时 :奇数全变
当按第三种操作时 :偶数全变
当按第四种操作时 :3K + 1 全变(1 , 4 ,7 , 10 , 13 , 16 , 。。。97 ,100)。
四种情况的最小公倍数为 8 ,即是周期为 8 ,打表可得:
string s[8]={
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010",
"0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101",
"0110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110",
"1001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001",
"1100011100011100011100011100011100011100011100011100011100011100011100011100011100011100011100011101",
"0011100011100011100011100011100011100011100011100011100011100011100011100011100011100011100011100011",
"1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111"
};
1,当只按键一次出现的状态有:1,2,3,4
2,当按键二次则出现的状态有:1,2,3,5,6,7,8
3,当按键三次或三次以上全部状态可以出现。
AC代码:
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
int N,C;
int v1[],v2[];
int cmp(const void *a,const void *b)
{
if(*(string*)a>*(string*)b)
return ;
else return ;
} int main()
{
//freopen("input.txt","r",stdin);
string result[];
int temp,i,i1(),i2(),j,id();
string s[]={
"",
"",
"",
"",
"",
"",
"",
""
}; cin>>N>>C;
cin>>temp;
while(temp!=-)
{
v1[i1++]=temp-;
cin>>temp;
}
cin>>temp;
while(temp!=-)
{
v2[i2++]=temp-;
cin>>temp;
}
if(C==)
{
for(i=;i<N;i++)
cout<<s[][i];
cout<<endl;
}//c=0
else if(C>=)
{
for(i=;i<;i++)
{
if(i==)
{
if(C==) continue;
}
if(i== || i== || i== || i==)
{
if(C<) continue;
}
for(j=;j<i1;j++)
{
temp=v1[j];
if(s[i][temp]!='') break;
}
if(j==i1)
{
for(j=;j<i2;j++)
{
temp=v2[j];
if(s[i][temp]!='') break;
}
if(j==i2)
{
result[id]=s[i];
id++;
}
}
}//for
qsort(result,id,sizeof(string),cmp);
for(i=;i<id;i++)
{
for(j=;j<N;j++)
cout<<result[i][j];
cout<<endl;
}
}//if return ; }
poj 1176 Party Lamps的更多相关文章
- POJ 1176 Party Lamps&& USACO 2.2 派对灯(搜索)
题目地址 http://poj.org/problem?id=1176 题目描述 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都 ...
- POJ 1176 Party Lamps (DFS)
对于一束灯光.提供四种改变彩灯状态(ON<=>OFF)的操作:a.改变全部彩灯状态:b.改变奇数彩灯状态.c.改变偶数彩灯状态:d.改变3k+1号彩灯状态(1,4,7,10...). 给定 ...
- POJ 题目分类(转载)
Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...
- (转)POJ题目分类
初期:一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. ...
- poj分类
初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. ( ...
- poj 题目分类(1)
poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...
- POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)
本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...
- POJ题目分类(转)
初期:一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. ...
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
随机推荐
- 【转】Unity3D的输入(Input)——键盘和鼠标
http://blog.csdn.net/lingyun_blog/article/details/41451565 Unity3D使用input类控制用户的输入,输入包括了用户键盘,鼠标,触摸,重力 ...
- Eclipse下使用Ant 【转】
官方在线帮助文档:http://ant.apache.org/manual/index.html 中文汉化 帮助文档:http://www.cnblogs.com/pengxl/archive/201 ...
- BLE GATT 介绍
做 BLE 快两年了,想想刚开始自己查各种资料学习的时候也是有很多感慨,记得最清楚的就是 GATT 这个东东,当时完全搞不懂,什么是服务?什么是特征值?什么是 UUID?最近感觉对这些概念又有点混乱了 ...
- Bluetooth GAP介绍
目录 1 GAP协议栈 2 Profile Role 3 用户接口 4 模式 5 安全 5.1 认证(Authentication) 5.2 安全模式 6 Idle Mode Procedures 7 ...
- SDP协议中的Continuation State
在SDP request和SDP response中,最后一部分为Continuation State,结构如下: 它用于一次response不够把所有的Data传回去的情况.这时候需要将respon ...
- nrf51822-广播模式
解决以下几个问题: 1 SDK9 中的几种广播模型 2 广播超时如何进入睡眠 3 如何取消广播超时睡眠使其可以无限广播. 1 SDK9 中的几种广播模型 Nordci SDK对于广播方面有一个模块.这 ...
- js解析Json字符串的方法
要把一个xml字符串转(“1,2,3,4,5,6,7,8,1,2”)换成数组的形式,每个值都应该是number类型的,想当然的就用了split方法,结果...问题来了,服务器要求数组的值是数字,而 ...
- 搭建PHP环境LAMP(Linux+Apache+MySQL+PHP)
1.安装Apache yum -y install httpd 用/etc/init.d/httpd start 启动apache apache默认的程序目录是/var/www/html 2.安装M ...
- ie8兼容border-radius方法
<!doctype html><html> <head> <meta charset="utf-8" /> &l ...
- day02-java
day02 大纲: 变量 基本数据类型 数据类型之间的转换 1.变量:存数的,代词,指代的就是它所存的那个数 1)声明: int a; //声明一个整型的变量,名为a int b ...