Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 35103   Accepted: 12805

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

题目大意:虫洞问题,现在有n个点,m条边,代表现在可以走的通路,比如从a到b和从b到a需要花费c时间,现在在地上出现了w个虫洞,虫洞的意义就是你从a到b话费的时间是-c(时间倒流,并且虫洞是单向的),现在问你从某个点开始走,能回到从前

解题思路:其实给出了坐标,这个时候就可以构成一张图,然后将回到从前理解为是否会出现负权环,用bellman-ford就可以解出了

#include<stdio.h>
#include<string.h>
#include<stack>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int u,v,w;
}que[5400];
int n,m,wh;
int Count;
int inf=999999999;
int dis[5000];
bool bellman_ford(){
memset(dis,inf,sizeof(dis));
dis[1]=0;
int flag;
int a,b,c;
for(int i=1;i<n;i++){
flag=0;
for(int j=0;j<Count;j++){
a=que[j].u,b=que[j].v,c=que[j].w;
if(dis[b]>dis[a]+c){
dis[b]=dis[a]+c;
flag=1;
}
}
if(!flag)
break;
}
for(int j=0;j<Count;j++){
a=que[j].u,b=que[j].v,c=que[j].w;
if(dis[b]>dis[a]+c)
return true;}
return false;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
Count=0;
scanf("%d%d%d",&n,&m,&wh);
int t1,t2,t3;
for(int i=1;i<=m;i++){ scanf("%d%d%d",&t1,&t2,&t3);
que[Count].u=t1;
que[Count].v=t2;
que[Count].w=t3;
Count++;
que[Count].u=t2;
que[Count].v=t1;
que[Count].w=t3;
Count++;
}
for(int i=m+1;i<=m+wh;i++){
scanf("%d%d%d",&t1,&t2,&t3);
que[Count].u=t1;
que[Count].v=t2;
que[Count].w=-t3;
Count++;
}
if(bellman_ford())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

poj3259 bellman——ford Wormholes解绝负权问题的更多相关文章

  1. poj 3259 bellman最短路推断有无负权回路

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36717   Accepted: 13438 Descr ...

  2. POJ 3259 Wormholes 虫洞(负权最短路,负环)

    题意: 给一个混合图,求判断是否有负环的存在,若有,输出YES,否则NO.有重边. 思路: 这是spfa的功能范围.一个点入队列超过n次就是有负环了.因为是混合图,所以当你跑一次spfa时发现没有负环 ...

  3. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  4. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  5. poj-3259 Wormholes(无向、负权、最短路之负环判断)

    http://poj.org/problem?id=3259 Description While exploring his many farms, Farmer John has discovere ...

  6. poj 3259 Wormholes 判断负权值回路

    Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u   Java ...

  7. Wormholes 最短路判断有无负权值

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  8. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  9. POJ 3259 Wormholes Bellman_ford负权回路

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

随机推荐

  1. [vijos1892]树上的最大匹配(树形DP)

    题目:https://vijos.org/p/1892 分析:(100分其实用到各种c++优化,没什么实际意义,所以弄70就可以了) 题目很简单,很容易想出用树形DP,但是求方案数的时候,满满都是细节 ...

  2. 编写高质量代码改善C#程序的157个建议[IEnumerable<T>和IQueryable<T>、LINQ避免迭代、LINQ替代迭代]

    前言 本文已更新至http://www.cnblogs.com/aehyok/p/3624579.html .本文主要学习记录以下内容: 建议29.区别LINQ查询中的IEnumerable<T ...

  3. WebView与JavaScript的交互

    目录: 一.整体思路 二.简单例子实现过程        1.打开项目的asset目录,创建新的文件test.html        2.补充html代码:添加供本地调用的js方法.调用本地方法的js ...

  4. codeforces 86D : Powerful array

    Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...

  5. DNS安全浅议、域名A记录(ANAME),MX记录,CNAME记录

    相关学习资料 http://baike.baidu.com/link?url=77B3BYIuVsB3MpK1nOQXI-JbS-AP5MvREzSnnedU7F9_G8l_Kvbkt_O2gKqFw ...

  6. TCP/IP详解 笔记一

    概述: Tcp-ip让网络上的计算机进行通信,而不管计算机和操作系统是否一样. 分层结构: Tcp/ip协议族是多层协议的组合,而tcp和ip只是其中的两个协议而已. 一个通信举例: 注意图的右上方: ...

  7. Laravel 5 中的配置

    介绍 Laravel 的所有的配置文件都放在了 config 这个目录的下面.每个选项都有介绍. config├── app.php├── auth.php├── cache.php├── compi ...

  8. java + jquery + ajax + json 交互

    前端js部分: $.ajax({ async:true, cache:false, type:"POST", dataType : 'json', url:"/shopp ...

  9. 分享一段Java搞笑的代码注释

    今天在群里看到有人分享了一段搞笑的注释代码,觉得挺好玩的,在这里收藏一下 // _ooOoo_ // o8888888o // 88" . "88 // (| -_- |) // ...

  10. 如果你也和我一样,OSX反应慢,不妨试试这个