题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少。

解法:离线树状数组。点不在坐标轴上,即点不共线使这题简单了不少,可以离散化点,也可以不离散化,因为x,y <= 500000,直接就可以搞。我这里是离散的,其实也没比直接搞快。

见两个树状数组,一个先把所有点都modify进去,一个等待以后加元素。

然后将查询和给出的点都按y坐标排序,然后离线对每个查询执行操作了。每次查询前把y坐标小于当前查询点的点加入树状数组。

这时的 左下角点数即为: LD = getsum(c2,Q[i].x-1);

右上角: UR = getsum(c1,maxi)-getsum(c1,Q[i].x)-(getsum(c2,maxi)-getsum(c2,Q[i].x));  即为整个右边的个数减去y坐标小于此点的(即为右下角)。

那么另两个象限的综述就是 n-LD-UR。

这样就解决了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 100007 struct node{
int x,y,ind;
}p[N],Q[N];
int n,m,maxi;
int c1[N],c2[N],a[N],b[N],ans[N];
int ma[],mb[];
int lowbit(int x) { return x&-x; }
int cmp(node ka,node kb) { return ka.y < kb.y; } void modify(int *c,int x,int val)
{
while(x <= maxi)
c[x] += val, x += lowbit(x);
} int getsum(int *c,int x)
{
int res = ;
while(x > ) { res += c[x]; x -= lowbit(x); }
return res;
} int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
a[i] = p[i].x, b[i] = p[i].y;
}
for(i=;i<=m;i++)
{
scanf("%d%d",&Q[i].x,&Q[i].y);
a[i+n] = Q[i].x, b[i+n] = Q[i].y;
Q[i].ind = i;
}
sort(a+,a+n+m+);
sort(b+,b+n+m+);
int inda = unique(a+,a+n+m+)-a-;
int indb = unique(b+,b+n+m+)-b-;
maxi = max(inda,indb);
for(i=;i<=inda;i++) ma[a[i]] = i;
for(i=;i<=indb;i++) mb[b[i]] = i; for(i=;i<=n;i++) p[i].x = ma[p[i].x], p[i].y = mb[p[i].y];
for(i=;i<=m;i++) Q[i].x = ma[Q[i].x], Q[i].y = mb[Q[i].y];
sort(p+,p+n+,cmp);
sort(Q+,Q+m+,cmp);
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
for(i=;i<=n;i++)
modify(c1,p[i].x,);
j = ;
for(i=;i<=m;i++)
{
while(j <= n && p[j].y <= Q[i].y)
modify(c2,p[j].x,), j++;
int LD = getsum(c2,Q[i].x-);
int UR = getsum(c1,maxi)-getsum(c1,Q[i].x)-(getsum(c2,maxi)-getsum(c2,Q[i].x));
ans[Q[i].ind] = abs(*(LD+UR)-n);
}
for(i=;i<=m;i++) printf("%d\n",ans[i]);
if(t >= ) puts("");
}
return ;
}

直接搞不离散的代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 500007 struct node{
int x,y,ind;
}p[N],Q[N];
int n,m,maxi;
int c1[N],c2[N],a[N],b[N],ans[N];
int lowbit(int x) { return x&-x; }
int cmp(node ka,node kb) { return ka.y < kb.y; } void modify(int *c,int x,int val)
{
while(x <= maxi)
c[x] += val, x += lowbit(x);
} int getsum(int *c,int x)
{
int res = ;
while(x > ) { res += c[x]; x -= lowbit(x); }
return res;
} int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
p[i].x++, p[i].y++;
maxi = max(maxi,p[i].x);
}
for(i=;i<=m;i++)
{
scanf("%d%d",&Q[i].x,&Q[i].y);
Q[i].x++, Q[i].y++;
Q[i].ind = i;
maxi = max(maxi,Q[i].x);
}
sort(p+,p+n+,cmp);
sort(Q+,Q+m+,cmp);
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
for(i=;i<=n;i++)
modify(c1,p[i].x,);
j = ;
for(i=;i<=m;i++)
{
while(j <= n && p[j].y <= Q[i].y)
modify(c2,p[j].x,), j++;
int LD = getsum(c2,Q[i].x-);
int UR = getsum(c1,maxi)-getsum(c1,Q[i].x)-(getsum(c2,maxi)-getsum(c2,Q[i].x));
ans[Q[i].ind] = abs(*(LD+UR)-n);
}
for(i=;i<=m;i++) printf("%d\n",ans[i]);
if(t >= ) puts("");
}
return ;
}

POJ 3416 Crossing --离线+树状数组的更多相关文章

  1. HDU 2852 KiKi's K-Number(离线+树状数组)

    题目链接 省赛训练赛上一题,貌似不难啊.当初,没做出.离线+树状数组+二分. #include <cstdio> #include <cstring> #include < ...

  2. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组

    题目链接:CF #365 (Div. 2) D - Mishka and Interesting sum 题意:给出n个数和m个询问,(1 ≤ n, m ≤ 1 000 000) ,问在每个区间里所有 ...

  3. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组(转)

    转载自:http://www.cnblogs.com/icode-girl/p/5744409.html 题目链接:CF #365 (Div. 2) D - Mishka and Interestin ...

  4. HDU3333 Turing Tree 离线树状数组

    题意:统计一段区间内不同的数的和 分析:排序查询区间,离线树状数组 #include <cstdio> #include <cmath> #include <cstrin ...

  5. 离线树状数组 hihocoder 1391 Countries

    官方题解: // 离线树状数组 hihocoder 1391 Countries #include <iostream> #include <cstdio> #include ...

  6. 13年山东省赛 Boring Counting(离线树状数组or主席树+二分or划分树+二分)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 2224: Boring Counting Time Limit: 3 Sec   ...

  7. 区间的关系的计数 HDU 4638 离线+树状数组

    题目大意:给你n个人,每个人都有一个id,有m个询问,每次询问一个区间[l,r],问该区间内部有多少的id是连续的(单独的也算是一个) 思路:做了那么多离线+树状数组的题目,感觉这种东西就是一个模板了 ...

  8. BZOJ_2743_[HEOI2012]采花_离线+树状数组

    BZOJ_2743_[HEOI2012]采花_离线+树状数组 Description 萧芸斓是Z国的公主,平时的一大爱好是采花.今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花 .花园足够大 ...

  9. SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)

    DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...

随机推荐

  1. Erlang进程间消息接收超时设定

        Erlang消息接收函数,一般都会设计成尾递归调用自己的模式.但是这样的模式,如果没有消息则会无限的等待下去,所以为了不无限等待,这里可以加个超时设定,例如: flush() -> re ...

  2. ASP.NET本质论第一章网站应用程序学习笔记1

    1.统一资源标示符 1) 格式:协议://主机[.端口号][绝对路径[?参数]],在Http://www.kencery.com/hyl/index/login中,http表示协议的名称,www.ke ...

  3. Vue自定义过滤器

    gitHub地址: https://github.com/lily1010/vue_learn/tree/master/lesson05 一 自定义过滤器(注册在Vue全局) 注意事项: (1)全局方 ...

  4. CSS文本溢出显示省略号

    项目中常常有这种需要我们对溢出文本进行"..."显示的操作,单行多行的情况都有(具体几行得看设计师心情了),这篇随笔是我个人对这种情况解决办法的归纳,欢迎各路英雄指教. 单行 语法 ...

  5. margin:0 auto;不能居中的原因

    原因: 1.没有设置本身元素和父元素的宽度 2.本身元素使用了绝对定位和浮动 2.没声明DOCTYPE

  6. 据说是百度ios面试题

    百度面试题:   一面:知识点 Objective C runtime library: Objective C的对象模型,Block的底层实现结构,消息发送,消息转发,内存管理 CoreData : ...

  7. App开发流程之图像处理工具类

    先罗列一下工具类中提供的方法: /** * 根据原始view和毛玻璃样式,获取模糊视图,并自动作为原view的subview(如果不需要作为子视图,自行调用removeFromSuperview) * ...

  8. Spring(二)Bean入门

    一.BeanFactory介绍 1.1.Bean: 在Spring技术中是基于组件的 最基本了是最常用的单元 其实实例保存在Spring的容器当中 Bean通常被定义在配置文件当中,Bean实例化由S ...

  9. iOS8以后 UISearchController的用法

    查了不少资料,都不太全,自己查看了apple文档,写了一份代码: 如下(只是界面): 1. 声明属性 @property (nonatomic, strong) UISearchController ...

  10. win8下出现安装sql2012 正在启动操作系统功能"NetFx3"

    今天上午装win8系统,发现在装sql server 2012的时候,一直停在"正在启动操作系统功能"NetFx3""不动了,在网上找了下相关的资料,发现原来N ...