UValive 5713 Qin Shi Huang's National Road System
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1287 Accepted Submission(s): 475
Problem
Description
During
the Warring States Period of ancient China(476 BC to 221 BC), there were seven
kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying
Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally
conquered all six other kingdoms and became the first emperor of a unified
China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of
China(not to be confused with the Qing Dynasty, the last dynasty of China). So
Ying Zheng named himself "Qin Shi Huang" because "Shi
Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the
Great Wall of China, the now famous city-sized mausoleum guarded by a
life-sized Terracotta Army, and a massive national road system. There is a
story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by
n-1 roads, in order that he could go to every city from the capital city
Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to
be minimum,so that the road system may not cost too many people's life. A
daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a
road by magic and that magic road would cost no money and no labor. But Xu Fu
could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to
decide where to build the magic road. Qin Shi Huang wanted the total length of
all none magic roads to be as small as possible, but Xu Fu wanted the magic
road to benefit as many people as possible ---- So Qin Shi Huang decided that
the value of A/B (the ratio of A to B) must be the maximum, which A is the
total population of the two cites connected by the magic road, and B is the
total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line
segment connecting two points.
Input
The
first line contains an integer t meaning that there are t test cases(t <=
10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <=
1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X,
Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P
is the population of that city.
It is guaranteed that each city has a distinct location.
Output
For
each test case, print a line indicating the above mentioned maximum ratio A/B.
The result should be rounded to 2 digits after decimal point.
Sample
Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
Sample
Output
65.00
70.00
Source
2011 Asia
Beijing Regional Contest
【思路】
最小生成树+边交换。
题目中要求:两城市P之和为A,其他城市路径长度为B,有A/B最小。
简单的想可以求出最小生成树之后一次枚举n条边使徐福同学修路然后求一遍MST,时间为O(NMlogM)。
类比于求次小生成树,我们可以做一遍MST得到总权值tot,预处理出maxcost[][]为两点之间在MST上的最长边。枚举两点ij使徐福修maxcost代表的边(这种情况一定对应着删边后的生成树总权值最小),此时有A=P[i]+P[j],有B=tot-maxcost[i][j],比较得ans。时间为O(N^2)。
【代码】
#include<cstdio>
#include<cmath>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn = +;
struct Edge{
int v,next;
double w;
}e[maxn*maxn];
int en,front[maxn];
inline void AddEdge(int u,int v,double w) {
en++; e[en].v=v; e[en].w=w; e[en].next=front[u]; front[u]=en;
} int n,m;
int x[maxn],y[maxn],p[maxn];
double maxcost[maxn][maxn]; struct Edge_Krus{
int u,v;
double w;
bool operator<(const Edge_Krus& rhs) const{
return w<rhs.w;
}
}edges[maxn*maxn];
int f[maxn];
inline int find(int x) {
return x==f[x]? x:f[x]=find(f[x]);
}
inline double dist(int i,int j) {
return sqrt((double)(x[i]-x[j])*(x[i]-x[j])+(double)(y[i]-y[j])*(y[i]-y[j]));
}
double Kruskal()
{
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
edges[m++]=(Edge_Krus) {i,j,dist(i,j)};
for(int i=;i<=n;i++) f[i]=i;
sort(edges,edges+m);
int cnt=;
double res=;
for(int i=;i<m;i++) {
int x=find(edges[i].u),y=find(edges[i].v);
if(x!=y) {
f[x]=y;
res += edges[i].w;
AddEdge(edges[i].u,edges[i].v,edges[i].w);
AddEdge(edges[i].v,edges[i].u,edges[i].w);
if(++cnt==n-) break;
}
}
return res;
} vector<int> nodes;
void dfs(int u,int fa,double facost) {
for(int i=;i<nodes.size();i++) {
int x=nodes[i];
maxcost[x][u]=maxcost[u][x]=max(maxcost[x][fa],facost);
}
nodes.push_back(u);
for(int i=front[u];i>=;i=e[i].next) {
int v=e[i].v;
if(v!=fa) dfs(v,u,e[i].w);
}
} int main() {
int T;
scanf("%d",&T);
while(T--)
{
en=-; m=;
memset(front,-,sizeof(front)); scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d%d%d",&x[i],&y[i],&p[i]); double tot=Kruskal(); nodes.clear();
memset(maxcost,,sizeof(maxcost));
dfs(,-,); double ans=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
ans=max(ans,(double)(p[i]+p[j])/(tot-maxcost[i][j]));
printf("%.2lf\n",ans);
}
return ;
}
UValive 5713 Qin Shi Huang's National Road System的更多相关文章
- UVALive 5713 Qin Shi Huang's National Road System秦始皇修路(MST,最小瓶颈路)
题意: 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B最 ...
- UVALive 5713 Qin Shi Huang's National Road System(次小生成树)
题意:对于已知的网络构建道路,使城市两两之间能够互相到达.其中一条道路是可以免费修建的,问需要修建的总长度B与免费修建的道路所连接的两城市的人口之和A的比值A/B最大是多少. 因为是求A/B的最大值, ...
- uvalive 5731 Qin Shi Huang’s National Road System
题意: 秦始皇要修路使得所有的城市连起来,并且花费最少:有一个人,叫徐福,他可以修一条魔法路,不花费任何的钱与劳动力. 秦始皇想让修路的费用最少,但是徐福想要受益的人最多,所以他们经过协商,决定让 A ...
- LA 5713 - Qin Shi Huang's National Road System(HDU 4081) MST
LA:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- Qin Shi Huang's National Road System HDU - 4081(树形dp+最小生成树)
Qin Shi Huang's National Road System HDU - 4081 感觉这道题和hdu4756很像... 求最小生成树里面删去一边E1 再加一边E2 求该边两顶点权值和除以 ...
- [hdu P4081] Qin Shi Huang’s National Road System
[hdu P4081] Qin Shi Huang’s National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
随机推荐
- setTimeout 和 setInterval区别
setTimeout和setIntelval都有定时的功能!!!取消定时功能的时候,都有对应的clearTimeout以及clearInterval与之对应. 但是他们之间是有区别的! setTime ...
- javascript创建对象(二)
原型模式:每创建一个函数都有一个prototype属性,它是一个指针,指向一个对象: 原型模式创建函数的方式: function Movie(){ }; Movie.prototype.name=&q ...
- 我和ASP.NET MVC有个约会
很早之前在项目中使用的软件架构模式,一直想着写一写加深自己对它的理解.但总是一天拖着一天,趁着现在闲,跟大家唠唠嗑这个东西. 首先什么是 MVC(Model-View-Controller) 呢?不得 ...
- 分享一个在PearOS里面的plank的配置文件
plank的配置文件的路径是/home/pear/.config/plank/dock1/settings #This file auto-generated by Plank. #2013-09-0 ...
- 使用switch case语句来显示月份的对应天数
方法一:控制台输入月份 package com.liaojianya.chapter1; import java.util.Scanner; /** * This program demonstrat ...
- [Introduction to programming in Java 笔记] 1.3.9 Factoring integers 素因子分解
素数 A prime is an integer greater than one whose only positive divisors are one and itself.整数的素因子分解是乘 ...
- [学习笔记]设计模式之Composite
为方便读者,本文已添加至索引: 设计模式 学习笔记索引 写在前面 在Composite(组合)模式中,用户可以使用多个简单的组件以形成较大的组件,而这些组件还可能进一步组合成更大的.它重要的特性是能够 ...
- Struts2常规配置
默认配置文件名:struts.xml WEB-INF/classes下(放到src下) Struts2的有效常量可以查看 org\apache\struts2 下的 default.p ...
- Table view 备忘
Table view 备忘 本篇会以备忘为主,主要是一些基础的代理方法和数据源方法具体的优化好点子会后续跟上. Table view的数据源方法 必须实现的数据源方法 // 返回每一行的cell,可以 ...
- 学习Swift -- 协议(上)
协议(上) 协议是Swift非常重要的部分,协议规定了用来实现某一特定工作或者功能所必需的方法和属性.类,结构体或枚举类型都可以遵循协议,并提供具体实现来完成协议定义的方法和功能.任意能够满足协议要求 ...