Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4263    Accepted Submission(s):
1510

Problem Description
Consider the following exercise, found in a generic
linear algebra textbook.

Let A be an n × n matrix. Prove that the
following statements are equivalent:

1. A is invertible.
2. Ax = b has
exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for
every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of
implications. For instance, one can proceed by showing that (a) implies (b),
that (b) implies (c), that (c) implies (d), and finally that (d) implies (a).
These four implications show that the four statements are
equivalent.

Another way would be to show that (a) is equivalent to (b)
(by proving that (a) implies (b) and that (b) implies (a)), that (b) is
equivalent to (c), and that (c) is equivalent to (d). However, this way requires
proving six implications, which is clearly a lot more work than just proving
four implications!

I have been given some similar tasks, and have already
started proving some implications. Now I wonder, how many more implications do I
have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of
testcases, at most 100. After that per testcase:

* One line containing
two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements
and the number of implications that have already been proved.
* m lines with
two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has
been proved that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number
of additional implications that need to be proved in order to prove that all
statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
题意:n个点m条边的有向图,问最少增加多少边使图强连通。
题解:求每个scc的入度和出度,然后分别求出入度中0的个数in和出度out,取in和out中较大的一个; 
因为入度或出度为0证明这个scc和别的scc未相连,需要用一条边相连,这条边就是要加入的边,又因为一个scc可能连接多个scc,即只考虑入度或者只考虑出度都不准确
 
和昨天做的那道题一模一样,今天再做一遍 就当练练手吧
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#include<stack>
#define MAX 50010
#define INF 0x3f3f3f
using namespace std;
struct node
{
int beg,end,next;
}edge[MAX];
int low[MAX],dfn[MAX];
int n,m,ans;
int sccno[MAX],instack[MAX];
int dfsclock,scccnt;
vector<int>newmap[MAX];
vector<int>scc[MAX];
int head[MAX];
int in[MAX],out[MAX];
stack<int>s;
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int a,b,i;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
}
}
void tarjan(int u)
{
int v,i,j;
s.push(u);
instack[u]=1;
dfn[u]=low[u]=++dfsclock;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
scccnt++;
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
sccno[v]=scccnt;
if(v==u)
break;
}
}
}
void find(int l,int r)
{
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
memset(sccno,0,sizeof(sccno));
dfsclock=scccnt=0;
for(int i=l;i<=r;i++)
{
if(!dfn[i])
tarjan(i);
}
}
void suodian()
{
int i;
for(i=1;i<=scccnt;i++)
{
newmap[i].clear();
in[i]=0;out[i]=0;
}
for(i=0;i<ans;i++)
{
int u=sccno[edge[i].beg];
int v=sccno[edge[i].end];
if(u!=v)
{
newmap[u].push_back(v);
in[v]++;
out[u]++;
}
}
}
void solve()
{
int i;
if(scccnt==1)
{
printf("0\n");
return ;
}
else
{
int inn=0;
int outt=0;
for(i=1;i<=scccnt;i++)
{
if(!in[i]) inn++;
if(!out[i]) outt++;
}
printf("%d\n",max(inn,outt));
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}

  

 

hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】的更多相关文章

  1. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  2. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  3. poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】

    Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10141   Accepted: 503 ...

  4. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  5. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  6. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  7. poj 1236 Network of Schools【强连通求孤立强连通分支个数&&最少加多少条边使其成为强连通图】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13800   Accepted: 55 ...

  8. hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  9. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. 关于学习HTML5中自己犯的错误

    7.1写错了 siblings()这个函数写成了sibling,在jQuery中并没有这个函数的定义 在查找错误的过程中,自己也发现了一个学习jQuery的网站http://www.365mini.c ...

  2. webstorm快捷方式

    刚开始在使用webstrom的时候,不知道快捷方式,感觉自己把webstorm当做记事本使用,真的挺傻的,在朋友的指导下,原来webstorm有快捷方式 一.界面操作 快捷键 说明 ctrl+shif ...

  3. Sublime Text3 个人使用心得

    sublime与webstorm的比较: webstorm真心很强大,强大到能够几乎满足所有前端开发者编程的需求,方便的快捷键操作.代码提示.浏览器查看.工程管理.历史记录(可以找到之前编辑的内容,即 ...

  4. Json 数组排序

    /*********************************************Json 数组排序 ******************************************** ...

  5. jQuery iframe 自适应高宽度

    Html <iframe id="你的id" src="你要嵌入的页面" scrolling="no" frameborder=&qu ...

  6. 【转】EXT JS MVC开发模式

    原文链接:EXT JS MVC开发模式 在app(亦即根目录)文件夹下面创建controller.model.store和view文件夹,从名称上就知道他们该放置什么代码了吧.然后创建Applicat ...

  7. 使用Yii框架中遇到的三个问题

    以下由我们在信易网络公司开发项目的时候终结出的一些经验 使用Yii框架中遇到的三个问题 1.main.php文件中欲引入全局变量的问题 还原一下此问题:在Yii框架中,main.php一般会作为整个应 ...

  8. extjs中第一次访问有效,第二次访问出现部分组件无法显示的,动态改变组件的label值的方法,ExtJs中组件最好少使用ID属性(推荐更多使用Name属性)

    在公司做的一个OA项目中,曾经就遇到了这样的一个问题:(我是在jsp中的div中将js render到div中去的)第一次访问此界面的时候,formpanel上的组件能正常显示,不刷新整个页面的前提下 ...

  9. PHP 判断是表单否有这个参数,如果没有则设置默认值

    <?php @$name = $_GET["name"]; if(isset($name)) { echo "name = " .$name; } els ...

  10. Android Training精要(七)内存管理

    在2.3.3及以下版本: 通過定義兩個整形變量來檢測bitmap是否display過或者已經在緩存中 下面的代碼當bitmap滿足兩個條件就被回收掉: 1. 兩個整形變量都變為0 2. bitmap不 ...