金明的预算方案

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件

附件

电脑

打印机,扫描仪

书柜

图书

书桌

台灯,文具

工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:

v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)

请你帮助金明设计一个满足要求的购物单。

Input

有多组测试数据。

对于每组测试数据,输入的第1行,为两个正整数,用一个空格隔开:

N m

(其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

v p q

(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

处理到文件结束。

Output

对于每组测试数据,输出一行,只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。

Sample Input

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

Sample Output

2200

  这道题我在vijos和codevs上交可以AC的代码在HRBUST上WA,最后发现那个鬼OJ输入INT要%lld!!!从没见过啊!!!!!
  坑~
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn=;
int cost[maxn],val[maxn],ls[maxn],rs[maxn],fa[maxn];
int t[maxn][][];
int fir[maxn],cnt;
int dp[maxn][];
int main()
{
int Money,n;
while(~scanf("%d%d",&Money,&n))
{
memset(fir,,sizeof(fir));
memset(ls,,sizeof(ls));
memset(rs,,sizeof(rs));
memset(dp,,sizeof(dp));
memset(t,,sizeof(t));cnt=; for(int i=;i<=n;i++){
scanf("%lld%lld%lld",&cost[i],&val[i],&fa[i]);//这里有争议
val[i]*=cost[i];
if(!fa[i])continue;
if(ls[fa[i]])rs[fa[i]]=i;
else ls[fa[i]]=i;
} for(int i=;i<=n;i++){
if(fa[i])continue;
++cnt;
t[cnt][++fir[cnt]][]=cost[i];
t[cnt][fir[cnt]][]=val[i];
if(!ls[i]&&!rs[i])continue;
t[cnt][++fir[cnt]][]=cost[i]+cost[ls[i]];
t[cnt][fir[cnt]][]=val[i]+val[ls[i]]; if(rs[i]){
t[cnt][++fir[cnt]][]=cost[i]+cost[rs[i]];
t[cnt][fir[cnt]][]=val[i]+val[rs[i]]; t[cnt][++fir[cnt]][]=cost[i]+cost[ls[i]]+cost[rs[i]];
t[cnt][fir[cnt]][]=val[i]+val[ls[i]]+val[rs[i]];
}
} for(int k=;k<=cnt;k++)
for(int i=Money;i>=;i--)
for(int j=;j<=fir[k];j++)
if(i>=t[k][j][])
dp[k][i]=max(max(dp[k][i],dp[k-][i-t[k][j][]]+t[k][j][]),dp[k-][i]);
else
dp[k][i]=max(dp[k][i],dp[k-][i]); printf("%d\n",dp[cnt][Money]);
}
return ;
}

动态规划(背包问题):HRBUST 1377 金明的预算方案的更多相关文章

  1. 【动态规划】Vijos P1313 金明的预算方案(NOIP2006提高组第二题)

    题目链接: https://vijos.org/p/1313 题目大意: m(m<=32000)金钱,n(n<=60)个物品,花费vi,价值vi*ci,每个物品可能有不超过2个附件,附件没 ...

  2. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

  3. NOIP 2006 金明的预算方案(洛谷P1064,动态规划递推,01背包变形,滚动数组)

    一.题目链接:P1064 金明的预算方案 二.思路 1.一共只有五种情况 @1.不买 @2.只买主件 @3.买主件和附件1(如果不存在附件也要运算,只是这时附件的数据是0,也就是算了对标准的结果也没影 ...

  4. 背包形动态规划 fjutoj2375 金明的预算方案

    金明的预算方案 TimeLimit:1000MS  MemoryLimit:128MB 64-bit integer IO format:%lld   Problem Description 金明今天 ...

  5. 算法笔记_103:蓝桥杯练习 算法提高 金明的预算方案(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些 ...

  6. NOIP2006 金明的预算方案

    1.             金明的预算方案 (budget.pas/c/cpp) [问题描述] 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈 ...

  7. 【洛谷P1064】[NOIP2006] 金明的预算方案

    金明的预算方案 显然是个背包问题 把每个主件和它对应的附件放在一组,枚举每一组,有以下几种选法: 1.都不选 2.只选主件 3.一个主件+一个附件 4.一个主件+两个附件 于是就成了01背包.. #i ...

  8. NOIP 2006 金明的预算方案

    洛谷 P1064 金明的预算方案 https://www.luogu.org/problem/P1064 JDOJ 1420: [NOIP2006]金明的预算方案 T2 https://neooj.c ...

  9. [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案

    [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...

随机推荐

  1. HTML特效代码大全

    1)贴图:<img src="图片地址">2)加入连接:<a href="所要连接的相关地址">写上你想写的字</a>1)贴 ...

  2. 设置ORACLE环境变量

    sqlplus 执行不了可能原因是未设置环境变量,设置方法:  export ORACLE_HOME=/usr/local/instantclient_11_2

  3. LaTeX 中插入数学公式

    一.常用的数学符号 1.小写希腊字母 \alpha \nu \beta \xi \gamma o \delta \pi \epsilon \rho \zeta \sigma \eta \tau \th ...

  4. Android Studio下添加引用jar文件和so文件

    博客: 安卓之家 微博: 追风917 CSDN: 蒋朋的家 简书: 追风917 博客园: 追风917 安卓开发中我们常会遇到jar文件和so文件的引用,下面介绍下在as下如何添加使用,这里以百度地图s ...

  5. 网络编程(学习整理)---2--(Udp)实现简单的控制台聊天室

    1.UDP协议: 总结一下,今天学习的一点知识点! UDP也是一种通信协议,常被用来与TCP协议作比较!我们知道,在发送数据包的时候使用TCP协议比UDP协议安全,那么到底安全在哪里呢?怎么理解呢! ...

  6. php学习小技巧

    1.print_r可打印数组 <?php echo '<p class="ajax">This paragraph was loaded with AJAX.&l ...

  7. 基于jQuery查找dom的多种方式性能问题

    这个问题的产生由于我们前端组每个人的编码习惯的差异,最主要的还是因为代码的维护性问题.在此基础上,我对jQuery源码(1.11.3)查找dom节点相关的内容进行了仔细的查阅,虽然并不能理解的很深入 ...

  8. call 方法在使用一个指定的this值和若干个指定的参数值的前提下调用某个函数或方法.

    call 方法在使用一个指定的this值和若干个指定的参数值的前提下调用某个函数或方法. 注意:该函数的语法与 apply() 方法的语法几乎完全相同,唯一的区别在于,apply()方法接受的是一个参 ...

  9. python【第三篇】函数

    内容大纲: 1.函数基本语法与特性 2.参数与局部变量 3.返回值 4.递归 5.匿名函数lambda 6.函数式编程介绍 7.高阶函数 8.内置函数 1.函数基本语法与特性 函数的定义:函数是指将一 ...

  10. C++实现base64编码

    将昨天的php代码改造成C++ /*base_64.h文件*/ #ifndef BASE_64_H #define BASE_64_H /** * Base64 编码/解码 * @author lir ...