At first, I just want to learn SQL Server / T-SQL, which I hope can replace MySQL.

Then, I was attracted by Azure.

And I was trying to deploy Nodejs application on Azure.

Later on, I noticed that I can create Web API on Azure.

And I found that Web API can also be created by new ASP.NET Core 1.0 (like Nodejs, it is cross-platform).

With the Asp.NET Core 1.0, there is Entity Framework Core 1.0 as well, I am jumping into Entity Framework.

Material I have collected:

1) Create Node.js API using Swaggerize-express and Yo tool

https://blogs.msdn.microsoft.com/azureossds/2015/06/01/create-nodejs-api-app-using-swaggerize-express-and-yo-tool/

2) Open API Specification

https://github.com/OAI/OpenAPI-Specification/wiki

http://swagger.io/

3) Swaggerize-express on github

https://github.com/krakenjs/swaggerize-express

4) NPM generator-swaggerize

https://www.npmjs.com/package/generator-swaggerize

5) ASP.NET Core 1: Build your first web API with MVC 6

https://docs.asp.net/en/latest/tutorials/first-web-api.html

6) ASP.NET Core 1: Get started with Entity Framework 7

http://docs.efproject.net/en/latest/platforms/aspnetcore/getting-started.html

7) Introduce to ASP.NET vNext (ASP.NET Core 1)

https://github.com/aspnet/Home/wiki

8) Getting start with API app and ASP.NET on Azure

https://azure.microsoft.com/en-us/documentation/articles/app-service-api-dotnet-get-started/

9) Cross-platform single page application with Asp.NET 5, Angular 2, TypeScript

http://chsakell.com/2016/01/01/cross-platform-single-page-applications-with-asp-net-5-angular-2-typescript/

是为之记。

Alva Chien
2016.4.7

Recursive Learning的更多相关文章

  1. 论文翻译:2020_A Recursive Network with Dynamic Attention for Monaural Speech Enhancement

    论文地址:基于动态注意的递归网络单耳语音增强 论文代码:https://github.com/Andong-Li-speech/DARCN 引用格式:Li, A., Zheng, C., Fan, C ...

  2. A Statistical View of Deep Learning (I): Recursive GLMs

    A Statistical View of Deep Learning (I): Recursive GLMs Deep learningand the use of deep neural netw ...

  3. learning scala Function Recursive Tail Call

    可以使用scala库,可以从字面上看出是在调用 递归函数: code import scala.util.control.TailCalls._ val arrayDonuts: Array[Stri ...

  4. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  5. A Brief Review of Supervised Learning

    There are a number of algorithms that are typically used for system identification, adaptive control ...

  6. (转) Deep Learning Resources

    转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...

  7. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

  8. (转) Awesome Deep Learning

    Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...

  9. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

随机推荐

  1. python-Flask模版注入攻击SSTI(python沙盒逃逸)

    一篇以python Flask 模版渲染为例子的SSTI注入教学~ 0x01 Flask使用和渲染 这里简化了flask使用和渲染的教程 只把在安全中我们需要关注的部分写出来 来一段最简单的FLASK ...

  2. luogu P3936 Coloring

    [返回模拟退火略解] 题目描述 在一个 n×mn\times mn×m 的矩阵中,每个点都染了一种颜色(只能是 [1,c][1,c][1,c] 中的一种),求一种方案,使得相邻异色点对数最小. Sol ...

  3. Controller层的方法访问标志与Spring装配与AspectJ切面处理

    最近在做AspectJ实现的日志模块,在spring配置中加入了<aop:aspectj-autoproxy/>,之后发现,只要有用到自定义注解的类,某些方法经MVC请求时就报空指针错误. ...

  4. opencv::自定义线性滤波

    卷积概念 常见算子 自定义卷积模糊 卷积概念 1.卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作. 2.Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor po ...

  5. go-接口-反射

    接口类型总是代表着某一种类型(即所有实现它的类型)的行为. 一个接口类型的声明通常会包含关键字type.类型名称.关键字interface以及由花括号包裹的若干方法声明. type Animal in ...

  6. Electron开发跨平台桌面程序入门教程

    最近一直在学习 Electron 开发桌面应用程序,在尝试了 java swing 和 FXjava 后,感叹还是 Electron 开发桌面应用上手最快.我会在这一篇文章中实现一个HelloWord ...

  7. jenkins pipeline 流水线生产

    jenkins pipeline : pipeline { agent any parameters { string(name: 'git_version', defaultValue: 'v1.1 ...

  8. 百万年薪python之路 -- 函数的动态参数练习

    1.继续整理函数相关知识点. 2.写函数,接收n个数字,求这些参数数字的和.(动态传参) def func(*args,**kwargs): num_sum = 0 num_dic = [] num ...

  9. Canonical 开源 MicroK8 | 云原生生态周报 Vol. 25

    业界要闻 1.Canonical 开源 MicroK8 面向工作站和边缘/物联网的零运维 Kubernetes!MicroK8 是 Canonical 提供的一款功能强大的企业级 Kubernetes ...

  10. 一个html,3D 标签 鼓励自己

    效果如图: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w ...