理解Spark运行模式(二)(Yarn Cluster)
上一篇说到Spark的yarn client运行模式,它与yarn cluster模式的主要区别就是前者Driver是运行在客户端,后者Driver是运行在yarn集群中。yarn client模式一般用在交互式场景中,比如spark shell, spark sql等程序,但是该模式下运行在客户端的Driver与Yarn集群有大量的网络交互,如果客户端与集群之间的网络不是很好,可能会导致性能问题。因此一般在生产环境中,大部分还是采用yarn cluster模式运行spark程序。
下面具体还是用计算PI的程序来说明,examples中该程序有三个版本,分别采用Scala、Python和Java语言编写。本次用Python程序pi.py做说明。
from __future__ import print_function import sys
from random import random
from operator import add from pyspark.sql import SparkSession if __name__ == "__main__":
"""
Usage: pi [partitions]
"""
spark = SparkSession\
.builder\
.appName("PythonPi")\
.getOrCreate() partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
n = 100000 * partitions def f(_):
x = random() * 2 - 1
y = random() * 2 - 1
return 1 if x ** 2 + y ** 2 <= 1 else 0 count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 * count / n)) spark.stop()
程序逻辑与上一篇Scala程序一样,就不再多做说明了。
下面来以yarn cluster方式来执行这个程序,注意执行程序前先要启动hdfs和yarn,最好同时启动spark的history server,这样即使在程序运行完以后也可以从Web UI中查看到程序运行情况。
输入以下命令:
[root@BruceCentOS4 ~]# $SPARK_HOME/bin/spark-submit --master yarn --deploy-mode cluster $SPARK_HOME/examples/src/main/python/pi.py
以下是程序运行输出信息部分截图,
开始部分:

中间部分:

结束部分:

由于程序是以yarn cluster方式运行的,因此Driver是运行在Yarn集群当中(在BruceCentOS3上的ApplicationMaster进程当中),同时在BruceCentOS和BruceCentOS2上各运行了1个Executor进程(进程名字:CoarseGrainedExecutorBackend),而BruceCentOS4上的SparkSubmit进程仅仅作为yarn client向yarn集群提交spark程序。作为对比,在yarn client模式当中,客户端SparkSubmit进程不仅作为yarn client提交程序,而且同时还会运行Driver,并启动SparkContext,并且向Executor分配和管理Task,最后收集运行结果,因此yarn client模式程序输出信息会显示最终的打印结果。然而在yarn cluster模式当中,由于Driver运行在yarn集群的ApplicationMaster中,因此最终结果需要到ApplicationMaster进程的日志中取查看。可以通过如下命令查看。

SparkUI上的Executor信息:

BruceCentOS4上的客户端进程:

BruceCentOS3上的ApplicationMaster进程(包含Spark Driver):

BruceCentOS上的Executor:

BruceCentOS2上的Executor:

下面具体描述下Spark程序在yarn cluster模式下运行的具体流程。
这里是一个流程图:

- Spark Yarn Client向YARN提交应用程序,类似于MapReduce向Yarn提交程序,会将程序文件、库文件和配置文件等上传到HDFS。
- ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster中会运行Spark Driver,并进行SparkContext的初始化。
- ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束。
- 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度。
- ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。
- 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己。
以上就是个人对Spark运行模式(yarn cluster)的一点理解,其中参考了“求知若渴 虚心若愚”博主的“Spark(一): 基本架构及原理”的部分内容(其中基于Spark2.3.0对某些细节进行了修正),在此表示感谢。
理解Spark运行模式(二)(Yarn Cluster)的更多相关文章
- 理解Spark运行模式(一)(Yarn Client)
Spark运行模式有Local,STANDALONE,YARN,MESOS,KUBERNETES这5种,其中最为常见的是YARN运行模式,它又可分为Client模式和Cluster模式.这里以Spar ...
- 理解Spark运行模式(三)(STANDALONE和Local)
前两篇介绍了Spark的yarn client和yarn cluster模式,本篇继续介绍Spark的STANDALONE模式和Local模式. 下面具体还是用计算PI的程序来说明,examples中 ...
- spark运行模式之二:Spark的Standalone模式安装部署
Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Stan ...
- Spark运行模式:cluster与client
When run SparkSubmit --class [mainClass], SparkSubmit will call a childMainClass which is 1. client ...
- Spark运行模式与Standalone模式部署
上节中简单的介绍了Spark的一些概念还有Spark生态圈的一些情况,这里主要是介绍Spark运行模式与Spark Standalone模式的部署: Spark运行模式 在Spark中存在着多种运行模 ...
- spark运行模式
一.Spark运行模式 Spark有以下四种运行模式: local:本地单进程模式,用于本地开发测试Spark代码; standalone:分布式集群模式,Master-Worker架构,Master ...
- spark运行模式之一:Spark的local模式安装部署
Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Stan ...
- Spark运行模式概述
Spark编程模型的回顾 spark编程模型几大要素 RDD的五大特征 Application program的组成 运行流程概述 具体流程(以standalone模式为例) 任务调度 DAGSche ...
- Spark运行模式_spark自带cluster manager的standalone cluster模式(集群)
这种运行模式和"Spark自带Cluster Manager的Standalone Client模式(集群)"还是有很大的区别的.使用如下命令执行应用程序(前提是已经启动了spar ...
随机推荐
- POST PUT 小解
POST 主要是用来提交数据让服务器进行处理的,PUT主要是请求数据的. POST 提交的数据放在HTTP正文里面,而PUTT提交的数据放在url里面.
- Cocos2d-x 学习笔记(11.3) JumpBy JumpTo
1. JumpBy JumpTo JumpBy,边跳边平移,不只做垂直向上的抛物动作,同时还在向终点平移.JumpTo是JumpBy的子类. 1.1 成员变量 create方法 JumpBy: Vec ...
- Cocos2d-x 学习笔记(23) 分辨率与屏幕适配
Cocos2d-x的分辨率可以分为两种:屏幕分辨率和设计分辨率. 屏幕分辨率就是屏幕窗口的大小,单位是像素. 设计分辨率单位是点,一个点可能包括多个像素. 如果把一台显示器自身的分辨率比作屏幕分辨率的 ...
- java-反编译工具(luyten)
下载地址:https://github.com/deathmarine/Luyten
- [洛谷P2396]yyy loves Maths VII $\&$ [CF327E]Axis Walking
这道题是一个状压动归题.子集生成,每一位表示是否选择了第$i$个数. 转移:$f[S] = \sum f[S-\{x\}]$且$x\in S$,当该子集所有元素的和为$b_1$或$b_2$时不转移. ...
- zepto源码分析·ajax模块
准备知识 在看ajax实现的时候,如果对ajax技术知识不是很懂的话,可以参看下ajax基础,以便读分析时不会那么迷糊 全局ajax事件 默认$.ajaxSettings设置中的global为true ...
- travis-ci + php + casperjs 持续集成
.travis.yml 文件添加内容: sudo: required language: php php: - 5.5 before_script: - npm install -g casperjs ...
- 通过反射来手写简单的ORM SQlserver
不说废话,直接上干货,如发现问题,欢迎大家指出,谢谢! //------------------------------------MySQlServerORM [简单 CURD] using Sys ...
- Leetcode Tags(4)Stack & Queue
一.232. Implement Queue using Stacks private Stack<Integer> stack; /** Initialize your data str ...
- 数据结构(十六)模式匹配算法--Brute Force算法和KMP算法
一.模式匹配 串的查找定位操作(也称为串的模式匹配操作)指的是在当前串(主串)中寻找子串(模式串)的过程.若在主串中找到了一个和模式串相同的子串,则查找成功:若在主串中找不到与模式串相同的子串,则查找 ...