解锁云原生 AI 技能 - 开发你的机器学习工作流
按照上篇文章《解锁云原生 AI 技能 | 在 Kubernetes 上构建机器学习系统》搭建了一套 Kubeflow Pipelines 之后,我们一起小试牛刀,用一个真实的案例,学习如何开发一套基于 Kubeflow Pipelines 的机器学习工作流。
准备工作
机器学习工作流是一个任务驱动的流程,同时也是数据驱动的流程,这里涉及到数据的导入和准备、模型训练 Checkpoint 的导出评估、到最终模型的导出。这就需要分布式存储作为传输的媒介,此处使用 NAS 作为分布式存储。
- 创建分布式存储,这里以 NAS 为例。此处
NFS_SERVER_IP需要替换成真实 NAS 服务器地址
- 创建阿里云 NAS 服务,可以参考文档
- 需要在 NFS Server 中创建
/data
# mkdir -p /nfs
# mount -t nfs -o vers=4.0 NFS_SERVER_IP:/ /nfs
# mkdir -p /data
# cd /
# umount /nfs
- 创建对应的 Persistent Volume
# cat nfs-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: user-susan
labels:
user-susan: pipelines
spec:
persistentVolumeReclaimPolicy: Retain
capacity:
storage: 10Gi
accessModes:
- ReadWriteMany
nfs:
server: NFS_SERVER_IP
path: "/data" # kubectl create -f nfs-pv.yaml
创建 Persistent Volume Claim
# cat nfs-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: user-susan
annotations:
description: "this is the mnist demo"
owner: Tom
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi
selector:
matchLabels:
user-susan: pipelines
# kubectl create -f nfs-pvc.yaml
开发 Pipeline
由于 Kubeflow Pipelines 提供的例子都是依赖于 Google 的存储服务,这导致国内的用户无法真正体验 Pipelines 的能力。为此,阿里云容器服务团队提供了基于 NAS 存储训练 MNIST 模型的例子,方便您在阿里云上使用和学习 Kubeflow Pipelines。具体步骤分 3 步:
- (1) 下载数据
- (2) 利用 TensorFlow 进行模型训练
- (3) 模型导出
在这 3 个步骤中,后一个步骤都依赖于前一个步骤而完成。
Kubeflow Pipelines 中可以用 Python 代码描述这样一个流程, 完整代码可以查看 standalone_pipeline.py。
我们在例子中使用了基于开源项目 Arena 的 arena_op ,这是对于 Kubeflow 默认的 container_op 封装,它能够实现对于分布式训练 MPI 和 PS 模式的无缝衔接,另外也支持使用 GPU 和 RDMA 等异构设备和分布式存储的简单接入,同时方便从 git 源同步代码,是一个比较实用的工具 API。
@dsl.pipeline(
name='pipeline to run jobs',
description='shows how to run pipeline jobs.'
)
def sample_pipeline(learning_rate='0.01',
dropout='0.9',
model_version='',
commit='f097575656f927d86d99dd64931042e1a9003cb2'):
"""A pipeline for end to end machine learning workflow."""
data=["user-susan:/training"]
gpus=
# . prepare data
prepare_data = arena.standalone_job_op(
name="prepare-data",
image="byrnedo/alpine-curl",
data=data,
command="mkdir -p /training/dataset/mnist && \
cd /training/dataset/mnist && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/t10k-images-idx3-ubyte.gz && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/t10k-labels-idx1-ubyte.gz && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/train-images-idx3-ubyte.gz && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/train-labels-idx1-ubyte.gz")
# . downalod source code and train the models
train = arena.standalone_job_op(
name="train",
image="tensorflow/tensorflow:1.11.0-gpu-py3",
sync_source="https://code.aliyun.com/xiaozhou/tensorflow-sample-code.git",
env=["GIT_SYNC_REV=%s" % (commit)],
gpus=gpus,
data=data,
command='''
echo %s;python code/tensorflow-sample-code/tfjob/docker/mnist/main.py \
--max_steps --data_dir /training/dataset/mnist \
--log_dir /training/output/mnist --learning_rate %s \
--dropout %s''' % (prepare_data.output, learning_rate, dropout),
metrics=["Train-accuracy:PERCENTAGE"])
# . export the model
export_model = arena.standalone_job_op(
name="export-model",
image="tensorflow/tensorflow:1.11.0-py3",
sync_source="https://code.aliyun.com/xiaozhou/tensorflow-sample-code.git",
env=["GIT_SYNC_REV=%s" % (commit)],
data=data,
command="echo %s;python code/tensorflow-sample-code/tfjob/docker/mnist/export_model.py --model_version=%s --checkpoint_path=/training/output/mnist /training/output/models" % (train.output, model_version))
Kubeflow Pipelines 会将上面的代码转化成一个有向无环图 (DAG), 其中的每一个节点就是 Component (组件),而 Component (组件)之间的连线代表它们之间的依赖关系。从 Pipelines UI 可以看到 DAG 图:

首先具体理解一下数据准备的部分,这里我们提供了 arena.standalone_job_op 的 Python API, 需要指定该步骤的名称: name; 需要使用的容器镜像: image; 要使用的数据以及其对应到容器内部的挂载目录: data。
这里的 data 是一个数组格式, 如 data=["user-susan:/training"],表示可以挂载到多个数据。 其中 user-susan 是之前创建的 Persistent Volume Claim, 而 /training 为容器内部的挂载目录。
prepare_data = arena.standalone_job_op(
name="prepare-data",
image="byrnedo/alpine-curl",
data=data,
command="mkdir -p /training/dataset/mnist && \
cd /training/dataset/mnist && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/t10k-images-idx3-ubyte.gz && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/t10k-labels-idx1-ubyte.gz && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/train-images-idx3-ubyte.gz && \
curl -O https://code.aliyun.com/xiaozhou/tensorflow-sample-code/raw/master/data/train-labels-idx1-ubyte.gz")
而上述步骤实际上是从指定地址利用 curl 下载数据到分布式存储对应的目录 /training/dataset/mnist,请注意这里的 /training 为分布式存储的根目录,类似大家熟悉的根 mount 点;而 /training/dataset/mnist 是子目录。其实后面的步骤可以通过使用同样的根 mount 点,读到数据,进行运算。
第二步是利用下载到分布式存储的数据,并通过 git 指定固定 commit id 下载代码,并进行模型训练。
train = arena.standalone_job_op(
name="train",
image="tensorflow/tensorflow:1.11.0-gpu-py3",
sync_source="https://code.aliyun.com/xiaozhou/tensorflow-sample-code.git",
env=["GIT_SYNC_REV=%s" % (commit)],
gpus=gpus,
data=data,
command='''
echo %s;python code/tensorflow-sample-code/tfjob/docker/mnist/main.py \
--max_steps --data_dir /training/dataset/mnist \
--log_dir /training/output/mnist --learning_rate %s \
--dropout %s''' % (prepare_data.output, learning_rate, dropout),
metrics=["Train-accuracy:PERCENTAGE"])
可以看到这个步骤比数据准备要相对复杂一点,除了和第一步骤中的 name, image, data 和 command 一样需要指定之外,在模型训练步骤中,还需要指定:
- 获取代码的方式: 从可重现实验的角度来看,对于运行试验代码的追本溯源,是非常重要的一环。可以在 API 调用时指定
sync_source的 git 代码源,同时通过设定env中GIT_SYNC_REV指定训练代码的 commit id; - gpu: 默认为 0,就是不使用 GPU;如果为大于 0 的整数值,就代表该步骤需要这个数量的 GPU 数;
- metrics: 同样是从可重现和可比较的实验目的出发,用户可以将需要的一系列指标导出,并且通过 Pipelines UI 进行直观的显示和比较。具体使用方法分为两步:1. 在调用 API 时以数组的形式指定要收集指标的 metrics name 和指标的展示格式 PERCENTAGE 或者是 RAW,比如
metrics=["Train-accuracy:PERCENTAGE"]。 2. 由于 Pipelines 默认会从 stdout 日志中收集指标,你需要在真正运行的模型代码中输出 {metrics name}={value} 或者 {metrics name}:{value}, 可以参考具体样例代码。

值得注意的是:
在本步骤中指定了和
prepare_data相同的data参数 ["user-susan:/training"],就可以在训练代码中读到对应的数据,比如--data_dir /training/dataset/mnist。另外由于该步骤依赖于
prepare_data,可以在方法中通过指定prepare_data.output表示两个步骤的依赖关系。
最后 export_model 是基于 train 训练产生的 checkpoint,生成训练模型:
export_model = arena.standalone_job_op(
name="export-model",
image="tensorflow/tensorflow:1.11.0-py3",
sync_source="https://code.aliyun.com/xiaozhou/tensorflow-sample-code.git",
env=["GIT_SYNC_REV=%s" % (commit)],
data=data,
command="echo %s;python code/tensorflow-sample-code/tfjob/docker/mnist/export_model.py --model_version=%s --checkpoint_path=/training/output/mnist /training/output/models" % (train.output, model_version))
export_model 和第二步 train 类似,甚至要更为简单,它只是从 git 同步模型导出代码并且利用共享目录 /training/output/mnist 中的 checkpoint 执行模型导出。
整个工作流程看起来还是很直观的, 下面就可以定义一个 Python 方法将整个流程贯穿在一起:
@dsl.pipeline(
name='pipeline to run jobs',
description='shows how to run pipeline jobs.'
)
def sample_pipeline(learning_rate='0.01',
dropout='0.9',
model_version='',
commit='f097575656f927d86d99dd64931042e1a9003cb2'):
@dsl.pipeline 是表示工作流的装饰器,这个装饰器中需要定义两个属性,分别是
name和description。入口方法
sample_pipeline中定义了 4 个参数:learning_rate,dropout,model_version和commit, 分别可以在上面的train和export_model阶段使用。这里的参数的值实际上是 dsl.PipelineParam 类型,定义成 dsl.PipelineParam 的目的在于可以通过 Kubeflow Pipelines 的原生 UI 将其转换成输入表单,表单的关键字是参数名称,而默认值为参数的值。值得注意的是,这里的 dsl.PipelineParam 对应值实际上只能是字符串和数字型;而数组和 map,以及自定义类型都是无法通过转型进行变换的。
实际上,这些参数都可以在用户提交工作流时进行覆盖,以下就是提交工作流对应的 UI:

提交 Pipeline
您可以在自己的 Kubernetes 内将前面开发工作流的 Python DSL 提交到 Kubeflow Pipelines 服务中, 实际提交代码很简单:
KFP_SERVICE="ml-pipeline.kubeflow.svc.cluster.local:8888"
import kfp.compiler as compiler
compiler.Compiler().compile(sample_pipeline, __file__ + '.tar.gz')
client = kfp.Client(host=KFP_SERVICE)
try:
experiment_id = client.get_experiment(experiment_name=EXPERIMENT_NAME).id
except:
experiment_id = client.create_experiment(EXPERIMENT_NAME).id
run = client.run_pipeline(experiment_id, RUN_ID, __file__ + '.tar.gz',
params={'learning_rate':learning_rate,
'dropout':dropout,
'model_version':model_version,
'commit':commit})
利用
compiler.compile将 Python 代码编译成执行引擎 (Argo) 识别的 DAG 配置文件;通过 Kubeflow Pipeline 的客户端创建或者找到已有的实验,并且提交之前编译出的 DAG 配置文件。
在集群内准备一个 python3 的环境,并且安装 Kubeflow Pipelines SDK:
# kubectl create job pipeline-client --namespace kubeflow --image python: -- sleep infinity
# kubectl exec -it -n kubeflow $(kubectl get po -l job-name=pipeline-client -n kubeflow | grep -v NAME| awk '{print $1}') bash
登录到 Python3 的环境后,执行如下命令,连续提交两个不同参数的任务:
# pip3 install http://kubeflow.oss-cn-beijing.aliyuncs.com/kfp/0.1.14/kfp.tar.gz --upgrade
# pip3 install http://kubeflow.oss-cn-beijing.aliyuncs.com/kfp-arena/kfp-arena-0.4.tar.gz --upgrade
# curl -O https://raw.githubusercontent.com/cheyang/pipelines/update_standalone_sample/samples/arena-samples/standalonejob/standalone_pipeline.py
# python3 standalone_pipeline.py --learning_rate 0.0001 --dropout 0.8 --model_version
# python3 standalone_pipeline.py --learning_rate 0.0005 --dropout 0.8 --model_version
查看运行结果
登录到 Kubeflow Pipelines 的 UI: https://{pipeline地址}/pipeline/#/experiments, 比如:
https://11.124.285.171/pipeline/#/experiments

点击 Compare runs 按钮,可以比较两个实验的输入、花费的时间和精度等一系列指标。让实验可追溯是让实验可重现的第一步,而利用 Kubeflow Pipelines 本身的实验管理能力则是开启实验可重现的第一步。

总结
实现一个可以运行的 Kubeflow Pipeline 需要的步骤是:
- 构建 Pipeline (流水线)中需要的最小执行单元 Component (组件),如果是利用原生定义的
dsl.container_ops, 需要构建两部分代码:
- 构建运行时代码:通常是为每个步骤构建容器镜像,作为 Pipelines 和真正执行业务逻辑代码之间的适配器。它所做的事情为获取 Pipelines 上下文的输入参数,调用业务逻辑代码,并且将需要传递到下个步骤的输出按照 Pipelines 的规则放到容器内的指定位置,由底层工作流组件负责传递。 这样产生的结果是运行时代码与业务逻辑代码会耦合在一起。可以参考 Kubeflow Pipelines 的例子;
- 构建客户端代码:这个步骤通常是长成下面的样子, 熟悉 Kubernetes 的朋友会发现这个步骤实际上就是在编写 Pod Spec:
container_op = dsl.ContainerOp(
name=name,
image='<train-image>',
arguments=[
'--input_dir', input_dir,
'--output_dir', output_dir,
'--model_name', model_name,
'--model_version', model_version,
'--epochs', epochs
],
file_outputs={'output': '/output.txt'}
)
container_op.add_volume(k8s_client.V1Volume(
host_path=k8s_client.V1HostPathVolumeSource(
path=persistent_volume_path),
name=persistent_volume_name))
container_op.add_volume_mount(k8s_client.V1VolumeMount(
mount_path=persistent_volume_path,
name=persistent_volume_name))
利用原生定义的 dsl.container_ops 的好处在于灵活,由于开放了和 Pipelines 的交互接口,用户可以在 container_ops 这个层面做许多事情。但是它的问题在于:
- 复用度低。每个 Component 都需要构建镜像和开发运行时代码;
- 复杂度高。使用者需要了解 Kubernetes 的概念,比如 resource limit, PVC, node selector 等一系列概念;
- 支持分布式训练困难。由于
container_op为单容器操作,如果需要支持分布式训练就需要在 container_ops 中提交和管理类似 TFJob 的任务。这里会带来复杂度和安全性的双重挑战,复杂度比较好理解,安全性是说提交 TFJob 这类任务的权限会需要开放额外的权限给 Pipeline 的开发者。
另一种方式是使用 arena_op 这种可以重用的 Component API,它使用通用运行时代码,可以免去重复构建运行时代码的工作;同时利用通用一套的 arena_op API 简化用户的使用;也支持 Parameter Server 和 MPI 等场景。建议您使用这种方式编译 Pipelines。
- 将构建好的 Component (组件)拼接成 Pipeline (流水线);
- 将 Pipeline (流水线)编译成 Argo 的执行引擎 (Argo) 识别的 DAG 配置文件, 并提交 DAG 配置文件到 Kubeflow Pipelines, 利用 Kubeflow Pipelines 自身的 UI 查看流程结果。
解锁云原生 AI 技能 - 开发你的机器学习工作流的更多相关文章
- 解锁云原生 AI 技能|在 Kubernetes 上构建机器学习系统
本系列将利用阿里云容器服务,帮助您上手 Kubeflow Pipelines. 介绍 机器学习的工程复杂度,除了来自于常见的软件开发问题外,还和机器学习数据驱动的特点相关.而这就带来了其工作流程链路更 ...
- 公有云上构建云原生 AI 平台的探索与实践 - GOTC 技术论坛分享回顾
7 月 9 日,GOTC 2021 全球开源技术峰会上海站与 WAIC 世界人工智能大会共同举办,峰会聚焦 AI 与云原生两大以开源驱动的前沿技术领域,邀请国家级研究机构与顶级互联网公司的一线技术专家 ...
- 云原生 AI 前沿:Kubeflow Training Operator 统一云上 AI 训练
分布式训练与 Kubeflow 当开发者想要讲深度学习的分布式训练搬上 Kubernetes 集群时,首先想到的往往就是 Kubeflow 社区中形形色色的 operators,如 tf-operat ...
- 云原生的弹性 AI 训练系列之一:基于 AllReduce 的弹性分布式训练实践
引言 随着模型规模和数据量的不断增大,分布式训练已经成为了工业界主流的 AI 模型训练方式.基于 Kubernetes 的 Kubeflow 项目,能够很好地承载分布式训练的工作负载,业已成为了云原生 ...
- .NET团队送给.NET开发人员的云原生学习资源
企业正在迅速采用云的功能来满足用户需求,提高应用程序的可伸缩性和可用性.要完全拥抱云并优化节约成本,就需要在设计应用程序时考虑到云的环境,也就是要用云原生的应用开发方法.这意味着不仅要更改应用程序的构 ...
- .NET平台系列31:.NET团队送给.NET开发人员的云原生学习资源汇总
系列目录 [已更新最新开发文章,点击查看详细] .NET Core 启动于2016年,跟K8S同年诞生,既拥有着悠久的历史积累,又集成了当下最新的设计理念,加上.NET团队持续对容器技术的官方 ...
- Aggregated APIServer 构建云原生应用最佳实践
作者 张鹏,腾讯云容器产品工程师,拥有多年云原生项目开发落地经验.目前主要负责腾讯云 TKE 云原生 AI 产品的开发工作. 谢远东,腾讯高级工程师,Kubeflow Member.Fluid(CNC ...
- 牛年 dotnet云原生技术趋势
首先祝大家:新年快乐,牛年大吉,牛年发发发! 2020年的春节,新冠疫情使得全球业务停滞不前,那时候,没有人知道会发生什么,因此会议被取消,合同被搁置,项目被推迟,一切似乎都停止了.但是我们却见证了I ...
- Java云原生崛起微服务框架Quarkus入门实践
@ 目录 概述 定义 GraalVM简介 为何使用 特性 官方性能 实战 入门示例 步骤 安装GraalVM 创建quarkus工程 Idea导入项目 Idea运行和调试 打包成普通的Jar 打包成依 ...
随机推荐
- Elastic:如何在一个机器上同时模拟多个node
Elastic:如何在一个机器上同时模拟多个node /bin/elasticsearch -E node.name=node1 -E cluster.name=my-application -E p ...
- C#用Call代替CallVirt之后的测试用例
一. C# 原始代码和直接结果 测试 C# 代码: class Program { static void Main(string[] args) { A c1 = new C(); c1.Foo() ...
- 阿里P7工作总结:Spring MVC的工作原理,看完受益匪浅
这篇文章将深入探讨Spring框架的一部分——Spring Web MVC的强大功能及其内部工作原理. 项目安装 在本文中,我们将使用最新.最好的Spring Framework 5.我们将重点介绍S ...
- Dynamics CRM定制子网格添加按钮实例之二:调试代码、打开Web资源及获取选择的记录
关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复222或者20160501可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...
- Android中使用WebView实现全屏切换播放网页视频
首先写布局文件activity_main.xml: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/an ...
- ucoreOS_lab 1~8 实验报告导航
所有的实验已经全部完成,实验的源代码及报告都在 Github 上,欢迎大家批评指正,如果觉得对你有帮助的话,欢迎为此项目 star & watch & fork 三连,让更多的朋友们看 ...
- [b0025] vmware_桥接网路设置
总结: 桥接 模式上外网比较简单. 缺点是每次重启虚拟机,分配的IP可能变化,导致 xshell 连接 时都要修改,很麻烦 桥接模式能不能配置静态IP ? 1. 环境 物理机网络 情况,从外部自动 ...
- [b0022] python 归纳 (八)_多进程_基本使用
# -*- coding: UTF-8 -*- """ 测试进程使用 multiprocessing.Process 使用: 1. 准备一个函数<fun>,子 ...
- [20190530]ORACLE 18c - ALTER SEQUENCE RESTART.txt
[20190530]ORACLE 18c - ALTER SEQUENCE RESTART.txt --//以前遇到要重置或者调整seq比较麻烦,我有时候采用比较粗暴的方式就是删除重建.--//18c ...
- linux环境下的Oracle部署
一. 环境及相关软件 虚拟机:VMwore Workstation Linux系统:CentOS ORACLE:ORACLE_112030_Linux-x86-64 Xmanger软件 二. 安装 ...