Nonrecursive Traversal of Binary Tree

First I wanna talk about why should we use <code>Stack</code> to implement this algorithm. I think it is due to the FILO feature of Stack, and that really matters and makes sense when you get around with tree stuff. Cause in nonrecursive way we have to remember where we came from, which means we must figure out how should we go back to the root node as we finish visiting the whole subtree. The key to understand and get good command of nonrecursive traversal of binary tree is to demostrate the whole process by your hand. Don't be lazy. :)

I. Preorder Nonrecursive Traversal

1.1 Algorithm

  In recursive way it is easy and simple to go back to the root when we finish handling or visiting the subtree. But it seems more tricky while you're using nonrecursive way, which means you need to find some auxiliary data structure to help you implement those algorithm. So there we go.

  In preorder way of traversing binary tree, we should visit the root first, then go to visit left subtree and visit the right subtree at last. So the most important thing is to bear the visiting order in mind.

  • a. visit the node and push it into stack as you go down along the left subtree untill it reaches the deepest bottom left node.
  • b. pop a node from the top of stack and check whether it owns a right node, and go right if does.
  • c. loop a ~ b until the stack is empty

  Noticing that when to visit the node may help you interpret this algorithm better.

1.2 Code

Talk is cheap, show me the code!    -- Linus Benedict Torvalds

 public class Node<E> {
public E data;
public Node<E> lnode;
public Node<E> rnode; public Node(){}
public Node(E data) {
this.data = data;
}
}
     /**
* preorder nonrecursive traversal with stack
* @param node
* @author sheepcore
*/
public void preOrderStk(Node<E> node) {
if(node == null)
return;
Node<E> root = node;
Stack<Node<E>> stack = new Stack<>();
while (root != null || !stack.isEmpty()){
while (root != null){
visit(root); //visit the root node first then go to left subtree
stack.push(root); //push left node into stack to go back
root = root.lnode;
}
if(!stack.isEmpty()){
root = stack.pop();
if(root.rnode != null) {
root = root.rnode; //visit the right subtree
} else {
root = null; //clear root when it is return from right subtree
}
}
}
}

II. Inorder Nonrecursive Traversal

2.1 Algorithm

  • a. push the node into stack as you go down along the left subtree untill it reaches the deepest bottom left node.
  • b. pop a node from the top of stack and visit it. Then check whether it owns a right node, go right if does.
  • c. loop a ~ b until the stack is empty

2.2 Code

     /**
* inorder non recursive traversal with stack
* @param node
* @author sheepcore
*/
public void inOrderStk(Node<E> node) {
if(node == null)
return;
Node<E> root = node;
Stack<Node<E>> stack = new Stack<>();
while (root != null || !stack.isEmpty()){
while (root != null){
stack.push(root); //go the left bottom of the tree
root = root.lnode;
}
if(!stack.isEmpty()){
root = stack.pop();
visit(root); //visit it
if(root.rnode != null) {
root = root.rnode;
} else {
root = null; //clear root when it is return from right subtree
}
}
}
}

III. Postorder Nonrecursive Traversal

3.1 Algorithm

  It is more tricky and tougher while traversing in postorder way than in preorder or inorder way. Cause we have no idea where it comes from when we go back to the root node. Therefore we got two common solutions: using tags or using two stacks.

  Using tags for each node can help us find out whether it comes from left subtree or right. Tag the node as "LEFT" while visiting the left subtree and change it to "RIGHT" as we finish. Then go right and go back the root and visit it.

  Using two stacks is prolly like this https://www.geeksforgeeks.org/iterative-postorder-traversal/ and check it out :).

3.2 Code

  1.Using tags

     /**
* postorder nonrecursive traversal of binary tree * The key to understand and get good command of this algorithm is to demonstrate the whole processes
* of each step and figure out how the nodes' status changed and for what that will make sense
* to you to permanently beat the algorithm. And you must know that each nodes should be pushed into
* stack twice which seems to be sort of time-consuming, so we can also check whether the nodes has
* right node when we go down alongside the left subtree and that could make the performance better. :)
* @param node
* @author sheepcore
*/
public void postOrderStk(Node<E> node){
if(root == null)
return;
Node<E> root = node;
stkNode<E> s;
Stack<stkNode<E>> stack = new Stack<>();
do {
while (root != null){ //go down along the left branches of the bitree
s = new stkNode<>();
s.node = root;
s.tag = tag.L;
stack.push(s);
root = root.lnode;
}//while-root
boolean continual = true; //flag for continue
while (continual && !stack.isEmpty()) {
s = stack.pop();
root = s.node;
switch (s.tag){
case L: s.tag = tag.R; //return from left subtree
stack.push(s);
continual = false;
root = root.rnode;
break;
case R: visit(root); break; //return from right subtree
}
}//while-continual-stack
}while (!stack.isEmpty());
}

  2.Using two stacks

     /**
* post-order nonrecursive traversal with two stacks
* @param node
*/
public void postOrderStk2(Node<E> node){
if(root == null)
return;
Node<E> root = node;
Stack<Node<E>> s1 = new Stack<>();
Stack<Node<E>> s2 = new Stack<>();
s1.push(root);
while (!s1.isEmpty()){
root = s1.pop();
s2.push(root);
if (root.lnode != null) { s1.push(root.lnode); }
if (root.rnode != null) { s1.push(root.rnode); }
}
while (!s2.isEmpty()){
visit(s2.pop());
}
System.out.println();
}

IV. Levelorder Nonrecursive Traversal

4.1 Algorithm

  In levelorder you need to visit the nodes from left to right and from top to bottom of the tree. Using a queue to implement the algorithm is way more simple as you think.

4.2 Code

    /**
* level order traversal using queue
* 1. check and visit the root node remove from the queue
* 2. add its left and right nodes if does
* 3. loop 1 ~ 2 while queue is empty
* @param root
* @author sheepcore
*/
public void levelOrder(Node<E> root){
if(root == null)
return;
LinkedList<Node<E>> q = new LinkedList<>();
Node<E> cur;
q.addLast(root);
while (!q.isEmpty()) {
cur = q.removeFirst();
visit(cur);
if(cur.lnode != null) {
q.addLast(cur.lnode);
}
if(cur.rnode != null){
q.addLast(cur.rnode);
}
}
}

V. Summary

  哈哈,自己的第一篇全英文博客,最近因为考试在练英文写作,所以干脆就趁热打铁一下。总结一下,这四种二叉树遍历的非递归方法其实总体逻辑不算难,需要自己多在纸上演算推导,感受推导逻辑之后,才能把它转化为代码逻辑,这样写出的代码会更加印象深刻的。其中后序非递归遍历稍微麻烦一点,需要考虑当回溯到根节点时,是从左子树来的呢?还是从右子树呢?因为这两种情况对根节点将执行不同的操作,所以需要特别处理。其实方法还有很多,这里自己只是简单实现了两种最常见的方法:标志位法和双堆栈法。好啦!我得滚去学习了,因为落后就要挨打了!!!

Sometimes people call you an idiot when you do something stupid, keep doing that until you change that stupid things to glory things. And then you can stare at those people's eyes and say, "I made it bitch!". 

数据结构之二叉树篇卷三 -- 二叉树非递归遍历(With Java)的更多相关文章

  1. 二叉树3种递归和非递归遍历(Java)

    import java.util.Stack; //二叉树3种递归和非递归遍历(Java) public class Traverse { /******************一二进制树的定义*** ...

  2. 数据结构二叉树的递归与非递归遍历之java,javascript,php实现可编译(1)java

    前一段时间,学习数据结构的各种算法,概念不难理解,只是被C++的指针给弄的犯糊涂,于是用java,web,javascript,分别去实现数据结构的各种算法. 二叉树的遍历,本分享只是以二叉树中的先序 ...

  3. C++学习---二叉树的输入及非递归遍历

    二叉树的二叉链表存储表示如下 //二叉树的二叉链表存储表示 typedef struct BiTNode { char data;//结点数据域 struct BiTNode* lchild, * r ...

  4. ZT 二叉树的非递归遍历

    ZT 二叉树的非递归遍历 二叉树的非递归遍历 二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就 是递归定 ...

  5. Java实现二叉树的创建、递归/非递归遍历

    近期复习数据结构中的二叉树的相关问题,在这里整理一下 这里包含: 1.二叉树的先序创建 2.二叉树的递归先序遍历 3.二叉树的非递归先序遍历 4.二叉树的递归中序遍历 5.二叉树的非递归中序遍历 6. ...

  6. C++编程练习(17)----“二叉树非递归遍历的实现“

    二叉树的非递归遍历 最近看书上说道要掌握二叉树遍历的6种编写方式,之前只用递归方式编写过,这次就用非递归方式编写试一试. C++编程练习(8)----“二叉树的建立以及二叉树的三种遍历方式“(前序遍历 ...

  7. c/c++二叉树的创建与遍历(非递归遍历左右中,破坏树结构)

    二叉树的创建与遍历(非递归遍历左右中,破坏树结构) 创建 二叉树的递归3种遍历方式: 1,先中心,再左树,再右树 2,先左树,再中心,再右树 3,先左树,再右树,再中心 二叉树的非递归4种遍历方式: ...

  8. JAVA递归、非递归遍历二叉树(转)

    原文链接: JAVA递归.非递归遍历二叉树 import java.util.Stack; import java.util.HashMap; public class BinTree { priva ...

  9. 非递归遍历二叉树Java实现

    2018-10-03 20:16:53 非递归遍历二叉树是使用堆栈来进行保存,个人推荐使用双while结构,完全按照遍历顺序来进行堆栈的操作,当然在前序和后序的遍历过程中还有其他的压栈流程. 一.Bi ...

随机推荐

  1. 谷歌移动UI框架Flutter教程之Widget

    引言 在之间我已经介绍了关于Flutter的下载安装以及配置,还有开发工具Android Studio的配置,还不知道的同学可以看看我这篇博客--谷歌移动UI框架Flutter入门.这里为什么非要用A ...

  2. c++自由的转换string和number

    string转数字 #include <string> #include <sstream> //使用stringstream需要引入这个头文件 //模板函数:将string类 ...

  3. Rest构建分布式 SpringCloud微服务架构项目

    一.开发环境:jdk  1.8.Maven  3.x.IDEA  2019.1.4.SpringBoot   2.0.7.spring Cloud  最新的稳定版  Finchley SR2   搭配 ...

  4. 开发APP必须知道的API集合,来源http://www.cnblogs.com/wikiki/p/7232388.html

    笔记 OneNote - OneNote支持获取,复制,创建,更新,导入与导出笔记,支持为笔记添加多媒体内容,管理权限等.提供SDK和Demo. 为知笔记 - 为知笔记Windows客户端开放了大量的 ...

  5. ios APP上的自动化测试

    1. 下载 http://blog.manbolo.com/2012/04/08/TestAutomation.zip%20 2. 开发工具安装:http://jingyan.baidu.com/ar ...

  6. Codeforces Round #504 E - Down or Right 交互题

    1023E 题意: 交互题.在一个有障碍地图中,问如何走才能从(1,1)走到(n,n),只能向右或者向左走.每次询问两个点,回复你这两个点能不能走通. 思路: 只用最多2*n-2次询问.从(1,1), ...

  7. whu-contest-2019(online)

    比赛网址:http://whu2019.contest.codeforces.com/group/YyBKO8xFiH/contest/102167 赛后总结: T:今天参加了武汉大学校赛网络赛,在c ...

  8. 详解RMQ-ST算法 ST模板

    RMQ问题是求解区间最值的问题. 这里分析的是ST算法,它可以对所有要处理的数据做到O(nlogn)的预处理,对每个区间查询做到O(1)查询 ST算法本质是一个DP的过程 这里通过举一个求最大值实例来 ...

  9. 基于LinkedhashMap实现的LRU算法

    LRU全称是Least Recently Used,即最近最久未使用的意思.LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已存 ...

  10. springboot的Interceptor、Filter、Listener及注册

    springboot拦截器: public class Interceptor implements HandlerInterceptor{ private Logger logger = Logge ...