题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1024



Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.



Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define
a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).



Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im,
jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).



But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.

Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
 
Recommend
We have carefully selected several similar problems for you:  1074 1025 1081 1080 1160



分析

设状态为 cur[i,j],表示前 j 项分为 i 段的最大和,且第 i 段必须包含 data[j],则状态转移方程如下:

cur[i,j] = max{cur[i,j − 1] + data[j],max{cur[i − 1,t] + data[j]}}, 其中i ≤ j ≤ n,i − 1 ≤ t < j

target = max{cur[m,j]}, 其中m ≤ j ≤ n


分为两种情况:

• 情况一,data[j] 包含在第 i 段之中,cur[i,j − 1] + data[j]。

• 情况二,data[j] 独立划分成为一段,max{cur[i − 1,t] + data[j]}。

观察上述两种情况可知 cur[i,j] 的值只和 cur[i,j-1] 和 cur[i-1,t] 这两个值相关,因此不需要二维数组,

可以用滚动数组,只需要两个一维数组,用 cur[j] 表示现阶段的最大值,即 cur[i,j − 1] + data[j],用

pre[j] 表示上一阶段的最大值,即 max{cur[i − 1,t] + data[j]}。

#include <stdio.h>
#include <stdlib.h>
#include <limits.h> int MaxSum(int * data, int m, int n){
int i, j, max_sum;
int * cur = (int *)calloc(n + 1, sizeof(int));
int * pre = (int *)calloc(n + 1, sizeof(int));
data = data - 1; //data下标从0开始, cur、pre下标从1开始,为使下标一致,data减1
for (i = 1; i <= m; ++i){
max_sum = INT_MIN;
for (j = i; j <= n; ++j){
if (cur[j - 1] < pre[j - 1])
cur[j] = pre[j - 1] + data[j];
else
cur[j] = cur[j - 1] + data[j];
pre[j - 1] = max_sum;
if (max_sum < cur[j])
max_sum = cur[j];
}
pre[j - 1] = max_sum;
}
free(cur);
free(pre);
return max_sum;
} int main(void){
int m, n, i, *data;
while (scanf("%d%d", &m, &n) != EOF){
data = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; ++i){
scanf("%d", &data[i]);
}
printf ("%d\n", MaxSum(data, m, n));
free(data);
} return 0;
}

参考资料:ACM Cheat Sheet

HDOJ 1024 Max Sum Plus Plus -- 动态规划的更多相关文章

  1. HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]

    Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  2. hdu 1024 Max Sum Plus Plus (动态规划)

    Max Sum Plus PlusTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  4. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  5. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  6. hdu1003 1024 Max Sum&Max Sum Plus Plus【基础dp】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4302208.html   ---by 墨染之樱花 dp是竞赛中常见的问题,也是我的弱项orz, ...

  7. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. java+hadoop+spark+hbase+scala+kafka+zookeeper配置环境变量记录备忘

    java+hadoop+spark+hbase+scala 在/etc/profile 下面加上如下环境变量 export JAVA_HOME=/usr/java/jdk1.8.0_102 expor ...

  2. jboss7的服务器开启和关闭命令

    国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html内部邀请码:C8E245J (不写邀请码,没有现金送)国内私 ...

  3. 局部更新listview的问题(只更新某个item)

    转:http://blog.csdn.net/wu_shu_jun/article/details/7794576 public void updateView(int itemIndex) { // ...

  4. 一步一步写算法(之hash表)

    [ 声明:版权全部,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] hash表,有时候也被称为散列表.个人觉得,hash表是介于链表和二叉树之间的一种中间结构.链 ...

  5. android128 zhihuibeijing 科大讯飞 语音识别

    - 科大讯飞 开放平台 http://open.voicecloud.cn/ package com.itheima.voicedemo; import android.app.Activity; i ...

  6. combo参数配置_手册

    combotree : 设置为多选框: $('#menu-combotree').combotree({multiple:true}).combotree('loadData', menuListJs ...

  7. 聊一聊ES5数组(Array)新增的那些方法

    一.前言 ES5中新增的一些处理数组(Array)的方法, 对于用JavaScript处理数据非常有用.我总结了一下,给这些方法分了类,大体如下: 2个索引方法:indexOf() 和 lastInd ...

  8. mysql 按月按周统计

    http://hi.baidu.com/liangjian1024/blog/item/6861541b1416094842a9ad7c.html 表finance有俩个字段如下 date date  ...

  9. 键盘工具栏的快速集成--HcCustomKeyboard

    源项目地址:HcCustomKeyboard HcCustomKeyboard是一个键盘工具栏控件: 效果: HcCustomKeyboard使用很方便: 三部: 添加控件->操作处理-> ...

  10. 寻找对象在父元素下的index

    方法一. window.onload=function(){    //寻找对象在父元素下的index    function getIndexParent(element){         var ...