Problem Description
这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下: 1.机器人一开始在棋盘的起始点并有起始点所标有的能量。 2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。 3.机器人不能在原地停留。 4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。 我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
 
Input
第一行输入一个整数T,表示数据的组数。 对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
 
Output
对于每一组数据输出方式总数对10000取模的结果.
 
Sample Input
1
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2
 
Sample Output
3948
 

方法一:当前的这个点可以到达其他点的方法数(直接4重循环)

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 10000
#define inf 1e12
#define N 106
int n,m;
int mp[N][N];
int dp[N][N];
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&mp[i][j]);
}
}
memset(dp,,sizeof(dp));
dp[][]=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=i;(k<=n) && (k<=mp[i][j]+i);k++){
for(int w=j;(w<=m) && (w<=mp[i][j]+i+j-k);w++){
if((k==i) && (w==j))continue;
dp[k][w]+=dp[i][j];
dp[k][w]%=MOD;
}
}
}
}
printf("%d\n",dp[n][m]%MOD);
}
return ;
}

方法二:记忆化dp,标记dp[n][m]=1,然后从前往后记忆化dp,dfs

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 10000
#define N 106
#define inf 1e12
int n,m;
int mp[N][N];
int dp[N][N];
bool judge(int x,int y){
if(x< || x>n || y< || y>m) return false;
return true;
}
int dfs(int x,int y){
if(dp[x][y]>=) return dp[x][y];
dp[x][y]=;
for(int i=;i<=mp[x][y];i++){
for(int j=;j<=mp[x][y]-i;j++){
if(judge(x+i,y+j)){
dp[x][y]=(dp[x][y]+dfs(x+i,y+j))%MOD;
}
}
}
return dp[x][y];
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&mp[i][j]);
}
}
memset(dp,-,sizeof(dp));
dp[n][m]=;
printf("%d\n",dfs(,));
}
return ;
}

hdu 1978 How many ways(dp)的更多相关文章

  1. HDU 1978 How many ways(动态规划)

    How many ways http://acm.hdu.edu.cn/showproblem.php?pid=1978 Problem Description 这是一个简单的生存游戏,你控制一个机器 ...

  2. HDU 2639 Bone Collector II (dp)

    题目链接 Problem Description The title of this problem is familiar,isn't it?yeah,if you had took part in ...

  3. HDU 1864 最大报销额(DP)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1864 题目: 最大报销额 Time Limit: 1000/1000 MS (Java/Others) ...

  4. HDU 4562 守护雅典娜(dp)

    守护雅典娜 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submi ...

  5. HDU - 6199 gems gems gems (DP)

    有n(2e4)个宝石两个人轮流从左侧取宝石,Alice先手,首轮取1个或2个宝石,如果上一轮取了k个宝石,则这一轮只能取k或k+1个宝石.一旦不能再取宝石就结束.双方都希望自己拿到的宝石数比对方尽可能 ...

  6. HDU 1978 How many ways(经典记忆化搜索)

    S - How many ways Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU - 6357 Hills And Valleys(DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=6357 题意 给一个数值范围为0-9的a数组,可以选择翻转一个区间,问非严格最长上升子序列,以及翻转的区间. 分析 ...

  8. 2014多校第四场1005 || HDU 4901 The Romantic Hero (DP)

    题目链接 题意 :给你一个数列,让你从中挑选一些数组成集合S,挑另外一些数组成集合T,要求是S中的每一个数在原序列中的下标要小于T中每一个数在原序列中下标.S中所有数按位异或后的值要与T中所有的数按位 ...

  9. hdu 5623 KK's Number(dp)

    问题描述 我们可爱的KK有一个有趣的数学游戏:这个游戏需要两个人,有N\left(1\leq N\leq 5*{10}^{4} \right)N(1≤N≤5∗10​4​​)个数,每次KK都会先拿数.每 ...

随机推荐

  1. 64位Win7安装+32位Oracle + PL/SQL 解决方法

    软件景象:64位win7.32位Oracle 10g. PL/SQL 9.0.4.1644 媒介:以前开辟用的都是32位体系,忽然换到64位上,安装景象真的有点麻烦了,尤其对于PL/SQL只支撑32位 ...

  2. JS代码混淆 支持PHP .NET PERL

    官方  http://dean.edwards.name/packer/ Also available as .NET, perl and PHP applications. .NET实例下载地址:h ...

  3. Jquery时间验证和转换工具

    var TimeObjectUtil; /** * @title 时间工具类 * @note 本类一律违规验证返回false * @author {boonyachengdu@gmail.com} * ...

  4. hdu 5465 Clarke and puzzle(前缀和,异或,nim博弈)

    Problem Description Clarke is a patient with multiple personality disorder. One day, Clarke split in ...

  5. 让你的javascript函数拥有记忆功能,降低全局变量的使用

    考虑例如以下场景:假如我们须要在界面上画一个圆,初始的时候界面是空白的.当鼠标移动的时候,圆须要尾随鼠标移动.鼠标的当前位置就是圆心.我们的实现方案是:假设界面上还没有画圆,那么就新创建一个:假设已经 ...

  6. scrollTo和scrollTo.js

    最近做一个项目前端要用到scrollTo和滚动视觉差.顺便把两个东西拿出来温习一下. HTML DOM里面定义了scrollTo方法,用法:scrollTo(xpos,ypos),把内容滚动到当前的指 ...

  7. module require区别

    LUA modue require package 区别 2011-01-19 12:41:35|  分类: 默认分类 |  标签:lua  package  module  require  加载  ...

  8. MFC多线程内存泄漏问题&amp;解决方法

    在用visual studio进行界面编程时(如MFC),前台UI我们能够通过MFC的消息循环机制实现.而对于后台的数据处理.我们可能会用到多线程来处理. 那么对于大多数人(尤其是我这样的菜鸟),一个 ...

  9. sqlplus常用操作命令(转)

    SQL*PLUS 是Oracle提供的一个工具程序,它不仅可以用于测试,运行SQL语句和PL/SQL块,而且还可以用于管理Oracle数据库  1.启动sql*plus 为了使用sql*plus,必须 ...

  10. [python笔记][第二章Python序列-list]

    2016/1/27学习内容 第二章 Python序列-list list常用操作 list.append(x) list.extend(L) list.insert(index,x) list.rem ...