转自:http://my.oschina.net/hanzhankang/blog/200275

附:各种操作的逻辑执行图 https://github.com/JerryLead/SparkInternals/blob/master/markdown/2-JobLogicalPlan.md

本文提供的是0.7.3版本中的action和transformation接口,RDD提供了两种类型的操作:transformation和action

1. transformation是得到一个新的RDD,方式很多,比如从数据源生成一个新的RDD,从RDD生成一个新的RDD
2. action是得到一个值,或者一个结果(直接将RDD cache到内存中)

所有的transformation都是采用的懒策略,就是如果只是将transformation提交是不会执行计算的,计算只有在action被提交的时候才被触发。下面介绍一下RDD的常见操作:(注意是dataset还是RDD)


transformation操作:

map(func):对调用map的RDD数据集中的每个element都使用func,然后返回一个新的RDD,这个返回的数据集是分布式的数据集

filter(func) : 对调用filter的RDD数据集中的每个元素都使用func,然后返回一个包含使func为true的元素构成的RDD

flatMap(func):和map差不多,但是flatMap生成的是多个结果

mapPartitions(func):和map很像,但是map是每个element,而mapPartitions是每个partition

mapPartitionsWithSplit(func):和mapPartitions很像,但是func作用的是其中一个split上,所以func中应该有index

sample(withReplacement,faction,seed):抽样

union(otherDataset):返回一个新的dataset,包含源dataset和给定dataset的元素的集合

distinct([numTasks]):返回一个新的dataset,这个dataset含有的是源dataset中的distinct的element

groupByKey(numTasks):返回(K,Seq[V]),也就是hadoop中reduce函数接受的key-valuelist

reduceByKey(func,[numTasks]):就是用一个给定的reduce func再作用在groupByKey产生的(K,Seq[V]),比如求和,求平均数

sortByKey([ascending],[numTasks]):按照key来进行排序,是升序还是降序,ascending是boolean类型

join(otherDataset,[numTasks]):当有两个KV的dataset(K,V)和(K,W),返回的是(K,(V,W))的dataset,numTasks为并发的任务数

cogroup(otherDataset,[numTasks]):当有两个KV的dataset(K,V)和(K,W),返回的是(K,Seq[V],Seq[W])的dataset,numTasks为并发的任务数

cartesian(otherDataset):笛卡尔积就是m*n,大家懂的

action操作:

reduce(func):说白了就是聚集,但是传入的函数是两个参数输入返回一个值,这个函数必须是满足交换律和结合律的

collect():一般在filter或者足够小的结果的时候,再用collect封装返回一个数组

count():返回的是dataset中的element的个数

first():返回的是dataset中的第一个元素

take(n):返回前n个elements,这个士driver program返回的

takeSample(withReplacement,num,seed):抽样返回一个dataset中的num个元素,随机种子seed

saveAsTextFile(path):把dataset写到一个text file中,或者hdfs,或者hdfs支持的文件系统中,spark把每条记录都转换为一行记录,然后写到file中

saveAsSequenceFile(path):只能用在key-value对上,然后生成SequenceFile写到本地或者hadoop文件系统

countByKey():返回的是key对应的个数的一个map,作用于一个RDD

foreach(func):对dataset中的每个元素都使用func

在spark新版中,也许会有更多的action和transformation,可以参照spark的主页

hadoop提供的接口只有map和reduce函数,spark是mapreduce的扩展,提供两类操作,而不是两个,使使用更方便,开发时的代码量会尽量的被spark的这种多样的API减少数十倍

Spark学习笔记--Transformation 和 action的更多相关文章

  1. Spark学习笔记之SparkRDD

    Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   ...

  2. spark学习笔记总结-spark入门资料精化

    Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...

  3. Spark学习笔记2——RDD(上)

    目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...

  4. 【web开发学习笔记】Structs2 Action学习笔记(两)

    action学习笔记2-大约action method讨论 Action运行的时候并不一定要运行execute方法,能够在配置文件里配置Action的时候用method=来指定运行哪个方法 也能够在u ...

  5. Spark学习笔记2(spark所需环境配置

    Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...

  6. Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)

    Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...

  7. Spark学习笔记-GraphX-1

    Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明: ...

  8. Spark学习笔记3——RDD(下)

    目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...

  9. Spark学习笔记0——简单了解和技术架构

    目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...

随机推荐

  1. grunt serve Warning: Running "sass:server" (sass) task

    使用grunt serve运行时遇到一问题: y@y:ydkt$ grunt serve Running "serve" task Running "clean:serv ...

  2. Android上传文件之FTP

    android客户端实现FTP文件(包括图片)上传应该没什么难度.写下来就了为了记录一下,望能帮到新手. 需要用到 commons-net-3.0.1.jar,后面附上jar包. 直接上代码: /** ...

  3. Altium designer PCB中过孔铺地连接的设置

    在Altium designer 6及更高版本如Altium Designer Winter 9.altium designer summer 9都会有这样的问题,在Altium DXP2004里面是 ...

  4. 关于百度地图InfoWindow响应自定义布局点击事件

    大概讲解: 在百度地图上显示一个marker,当marker被点击后,显示自定义的View.当自定义的View被点击后,响应不同Button的点击事件.被百度这个infowindo里面的view坑惨了 ...

  5. HDOJ 1197 Specialized Four-Digit Numbers

    Problem Description Find and list all four-digit numbers in decimal notation that have the property ...

  6. linux串口驱动分析——打开设备

    串口驱动是由tty_driver架构实现的.一个应用程序中的函数要操作硬件,首先会经过tty,级级调用之后才会到达驱动之中.本文先介绍应用程序中打开设备的open函数的整个历程. 首先在串口初始化中会 ...

  7. 【2012天津区域赛】部分题解 hdu4431—4441

    1001: 题意:给你13张麻将牌,问可以胡哪些张 思路: 枚举可能接到的牌,然后dfs判断能否胡 1002: 题意: 已知n,m 求 n的所有约数在m进制下的平方和 做法:队长用java高精度写的 ...

  8. NCPC 2015 - Problem A - Adjoin the Networks

    题目链接 : http://codeforces.com/gym/100781/attachments 题意 : 有n个编号为0-n-1的点, 给出目前已经有的边(最多n-1条), 问如何添加最少的边 ...

  9. 高性能Java解析器实现过程详解

    如果你没有指定数据或语言标准的或开源的Java解析器, 可能经常要用Java实现你自己的数据或语言解析器.或者,可能有很多解析器可选,但是要么太慢,要么太耗内存,或者没有你需要的特定功能.或者开源解析 ...

  10. 函数返回char* 的解决方案

    在C语言中,自动变量在堆栈中分配内存.当包含自动变量的函数或代码块退出时,它们所占用的内存便被回收,它们的内容肯定会被下一个所调用的函数覆盖.这一切取决于堆栈中先前的自动变量位于何处,活动函数声明了什 ...