【题意】初始资金s,有两种金券A和B,第i天,买入时将投入的资金购买比例为rate[i]的两种股票,卖出时将持有的一定比例的两种股票卖出,第i天股票价格为A[i],B[i],求最大获利。n<=100000。

【算法】动态规划+斜率优化(CDQ分治)

【题解】为了最大获利,每次交易一定是全部买进和全部卖出。

令s[i]表示前i天的最大获利,f[i]表示第i天能购买的最多A股数,g[i]=f[i]/rate[i]表示第i天能购买的最多B股数。

s[i]=max{ s[i-1] , f[j]*A[i]+g[j]*B[i] },j<i。

g[i]=s[i]/(A[i]*rate[i]+B[i])

f[i]=g[i]*rate[i]

对于决策j和k,假设f[j]<f[k],当k优于j时有:

f[j]*A[i]+g[j]*B[i]<f[k]*A[i]+g[k]*B[i]

移向得(g[j]-g[k])/(f[j]-f[k])>-A[i]/B[i],令k[i]=-A[i]/B[i],所以:

对于满足f[j]<f[k]的决策j和k,满足(g[j]-g[k])/(f[j]-f[k])>k[i]时决策k优于决策j。

然后用CDQ分治维护动态上凸包,按阶段分治,左子区间按x[]排序构造凸包,右子区间按k[]排序顺序决策。

具体过程见:CDQ分治优化动态规划

复杂度O(n log n)。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=;
const double eps=1e-,inf=;
double s[maxn];
int n,st[maxn];
struct cyc{int id;double A,B,r,k,x,y;}a[maxn],b[maxn];
bool cmp(cyc a,cyc b){return a.k>b.k;}
double k(int A,int B){
if(fabs(a[A].x-a[B].x)<eps){if(a[B].y<a[A].y)return -inf;else return inf;}
return (a[A].y-a[B].y)/(a[A].x-a[B].x);
}
void CDQ(int l,int r){
if(l==r){
s[l]=max(s[l],s[l-]);
a[l].y=s[l]/(a[l].A*a[l].r+a[l].B);
a[l].x=a[l].y*a[l].r;
return;
}
int mid=(l+r)>>;
int x1=l-,x2=mid;
for(int i=l;i<=r;i++)if(a[i].id<=mid)b[++x1]=a[i];else b[++x2]=a[i];
for(int i=l;i<=r;i++)a[i]=b[i];
CDQ(l,mid);
int top=;
for(int i=l;i<=mid;i++){
while(top>&&k(st[top],i)>k(st[top-],st[top]))top--;
st[++top]=i;
}
int x=;
for(int i=mid+;i<=r;i++){
while(x<top&&k(st[x],st[x+])>a[i].k)x++;
s[a[i].id]=max(s[a[i].id],a[st[x]].x*a[i].A+a[st[x]].y*a[i].B);
}
CDQ(mid+,r);
x1=l,x2=mid+;
for(int i=l;i<=r;i++){
if(x1>mid)b[i]=a[x2++];else
if(x2>r)b[i]=a[x1++];else
if(a[x1].x<a[x2].x)b[i]=a[x1++];else b[i]=a[x2++];
}
for(int i=l;i<=r;i++)a[i]=b[i];
}
int main(){
scanf("%d%lf",&n,&s[]);
for(int i=;i<=n;i++){
a[i].id=i;
scanf("%lf%lf%lf",&a[i].A,&a[i].B,&a[i].r);
a[i].k=-a[i].A/a[i].B;
}
sort(a+,a+n+,cmp);
CDQ(,n);
printf("%.3lf",s[n]);
return ;
}

【BZOJ】1492: [NOI2007]货币兑换Cash的更多相关文章

  1. BZOJ 1492: [NOI2007]货币兑换Cash( dp + 平衡树 )

    dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡 ...

  2. ●BZOJ 1492 [NOI2007]货币兑换Cash

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1492 题解: 斜率优化DP,CDQ分治 定义$DP[i]$为第i天结束后的最大收益. 由于题 ...

  3. bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1492   [题意] 有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B= ...

  4. 斜率优化(CDQ分治,Splay平衡树):BZOJ 1492: [NOI2007]货币兑换Cash

    Description Input 第一行两个正整数N.S,分别表示小Y 能预知的天数以及初始时拥有的钱数. 接下来N 行,第K 行三个实数AK.BK.RateK,意义如题目中所述 Output 只有 ...

  5. BZOJ 1492: [NOI2007]货币兑换Cash [CDQ分治 斜率优化DP]

    传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[ ...

  6. bzoj 1492: [NOI2007]货币兑换Cash

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  7. BZOJ 1492 [NOI2007]货币兑换Cash:斜率优化dp + cdq分治

    传送门 题意 初始时你有 $ s $ 元,接下来有 $ n $ 天. 在第 $ i $ 天,A券的价值为 $ A[i] $ ,B券的价值为 $ B[i] $ . 在第 $ i $ 天,你可以进行两种操 ...

  8. bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】

    参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...

  9. BZOJ 1492 [NOI2007]货币兑换Cash (CDQ分治/splay 维护凸包)

    题目大意:太长了略 splay调了两天一直WA弃疗了 首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖 反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了 容易 ...

  10. BZOJ 1492: [NOI2007]货币兑换Cash 斜率优化 + splay动态维护凸包

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

随机推荐

  1. 简述Java中Http/Https请求监听方法

    一.工欲善其事必先利其器 做Web开发的人总免不了与Http/Https请求打交道,很多时候我们都希望能够直观的的看到我们发送的请求参数和服务器返回的响应信息,这个时候就需要借助于某些工具啦.本文将采 ...

  2. MAVEN项目标准目录结构 ;

    http://blog.csdn.net/lengyue_wy/article/details/6718637 版权声明:本文为博主原创文章,未经博主允许不得转载.    1.标准目录结构: src ...

  3. python接口自动化测试框架实现之字符串插入变量(字符串参数化)

    问题: 在做接口自动化测试的时候,请求报文是json串,但是根据项目规则必须转换成字符串,然后在开头拼接“data=” 接口中很多入参值需要进行参数化. 解决方案: 1.Python并没有对在字符串中 ...

  4. so加载报错:dlopen failed: couldn't map ... Permission denied

    转自:https://blog.csdn.net/u013270444/article/details/60869376 问题描述: 我的应用当中集成了一个安全相关的sdk,而这个sdk中使用的so是 ...

  5. Impala:新一代开源大数据分析引擎--转载

    原文地址:http://www.parallellabs.com/2013/08/25/impala-big-data-analytics/ 文 / 耿益锋 陈冠诚 大数据处理是云计算中非常重要的问题 ...

  6. Testng 运行Cannot find class in classpath

    用Testng运行多个class,结果报: org.testng.TestNGException: Cannot find class in classpath: Salesman     at or ...

  7. BZOJ3620 似乎在梦中见过的样子(kmp)

    不是很懂为什么数据范围要开的这么诡异,想到正解都不敢写.用类似NOI2014动物园的方法,对每个后缀求出类似next的数组即可. #include<iostream> #include&l ...

  8. 除了GPS外的4种获得用户地理位置数据的方法

    纯粹的GPS解决方案以及它所生成的经纬度标签是地理位置数据的公认标准.但是至少还有4种方法可以获得地理位置数据: 1.手机信号塔数据:当移动设备的GPS芯片不能接收到GPS信号时,移动设备就需要与它所 ...

  9. NAT网络地址转换模拟过程

    原理图,如图1 图1 以下为配置NAT网络地址转换的实验: eNSP模拟图,如图2 图2 Step1.给路由器的每个接口赋予一个地址,如图3,图4 图3 图4 AR1和AR2中添加路由表项,如图5,图 ...

  10. 洛谷 P2123 皇后游戏 解题报告

    P2123 皇后游戏 题意: 给定\(T\)组长为\(n\)的\(A\),\(B\)数组和\(C\)的计算方法,求一种排列方法,使最大的\(C\)最小化. 数据范围: \(1 \le T \le 10 ...