Command Network
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 18769   Accepted: 5392

Description

After a long lasting war on words, a war on arms finally breaks out between littleken’s and KnuthOcean’s kingdoms. A sudden and violent assault by KnuthOcean’s force has rendered a total failure of littleken’s command network. A provisional network must be built immediately. littleken orders snoopy to take charge of the project.

With the situation studied to every detail, snoopy believes that the most urgent point is to enable littenken’s commands to reach every disconnected node in the destroyed network and decides on a plan to build a unidirectional communication network. The nodes are distributed on a plane. If littleken’s commands are to be able to be delivered directly from a node A to another node B, a wire will have to be built along the straight line segment connecting the two nodes. Since it’s in wartime, not between all pairs of nodes can wires be built. snoopy wants the plan to require the shortest total length of wires so that the construction can be done very soon.

Input

The input contains several test cases. Each test case starts with a line containing two integer N (N ≤ 100), the number of nodes in the destroyed network, and M (M ≤ 104), the number of pairs of nodes between which a wire can be built. The next N lines each contain an ordered pair xi and yi, giving the Cartesian coordinates of the nodes. Then follow M lines each containing two integers i and j between 1 and N (inclusive) meaning a wire can be built between node i and node j for unidirectional command delivery from the former to the latter. littleken’s headquarter is always located at node 1. Process to end of file.

Output

For each test case, output exactly one line containing the shortest total length of wires to two digits past the decimal point. In the cases that such a network does not exist, just output ‘poor snoopy’.

Sample Input

4 6
0 6
4 6
0 0
7 20
1 2
1 3
2 3
3 4
3 1
3 2
4 3
0 0
1 0
0 1
1 2
1 3
4 1
2 3

Sample Output

31.19
poor snoopy

Source

 
 
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
#define N 101
#define M 10001
#define inf 2e9
double x[N],y[N];
double in[N];
int n,m;
int pre[N],vis[N],col[N];
struct node
{
int u,v;
double dis;
}e[M];
double point_dis(int a,int b)
{
return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
double directed_MST()
{
int tot=n,root=,cirnum,to;
double ans=;
while()
{
for(int i=;i<=tot;i++) in[i]=inf;
for(int i=;i<=m;i++)
if(e[i].dis<in[e[i].v] && e[i].u!=e[i].v)
{
pre[e[i].v]=e[i].u;
in[e[i].v]=e[i].dis;
}
for(int i=;i<=tot;i++)
if(i!=root && in[i]==inf) return -;
cirnum=;
memset(vis,,sizeof(vis));
memset(col,,sizeof(col));
in[root]=;
for(int i=;i<=tot;i++)
{
ans+=in[i];
to=i;
while(vis[to]!=i && !col[to] && to!=root)
{
vis[to]=i;
to=pre[to];
}
if(to!=root && !col[to])
{
cirnum++;
for(int u=pre[to];u!=to;u=pre[u])
col[u]=cirnum;
col[to]=cirnum;
}
}
if(!cirnum) break;
for(int i=;i<=tot;i++)
if(!col[i]) col[i]=++cirnum;
for(int i=;i<=m;i++)
{
to=e[i].v;
e[i].u=col[e[i].u];
e[i].v=col[e[i].v];
if(e[i].u!=e[i].v) e[i].dis-=in[to];
}
tot=cirnum;
root=col[root];
}
return ans;
}
int main()
{
int u,v,tot;
double ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=;i<=n;i++) scanf("%lf%lf",&x[i],&y[i]);
tot=;
while(m--)
{
scanf("%d%d",&u,&v);
if(u!=v)
{
e[++tot].u=u;
e[tot].v=v;
e[tot].dis=point_dis(u,v);
}
}
m=tot;
ans=directed_MST();
if(ans==-) printf("poor snoopy\n");
else printf("%.2lf\n",ans);
}
}

poj 3164 Command Network(最小树形图模板)的更多相关文章

  1. POJ 3164 Command Network 最小树形图模板

    最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...

  2. POJ 3164 Command Network 最小树形图

    题目链接: 题目 Command Network Time Limit: 1000MS Memory Limit: 131072K 问题描述 After a long lasting war on w ...

  3. POJ 3164 Command Network 最小树形图 朱刘算法

    =============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...

  4. POJ3436 Command Network [最小树形图]

    POJ3436 Command Network 最小树形图裸题 傻逼poj回我青春 wa wa wa 的原因竟然是需要%.2f而不是.2lf 我还有英语作业音乐作业写不完了啊啊啊啊啊啊啊啊啊 #inc ...

  5. poj 3164 Command Network

    http://poj.org/problem?id=3164 第一次做最小树形图,看着别人的博客写,还没弄懂具体的什么意思. #include <cstdio> #include < ...

  6. POJ 3164 Command Network(最小树形图模板题+详解)

    http://poj.org/problem?id=3164 题意: 求最小树形图. 思路: 套模板. 引用一下来自大神博客的讲解:http://www.cnblogs.com/acjiumeng/p ...

  7. POJ 3164 Command Network (最小树形图)

    [题目链接]http://poj.org/problem?id=3164 [解题思路]百度百科:最小树形图 ]里面有详细的解释,而Notonlysucess有精简的模板,下文有对其模板的一点解释,前提 ...

  8. POJ 3164——Command Network——————【最小树形图、固定根】

    Command Network Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 15080   Accepted: 4331 ...

  9. POJ 3164 Command Network ( 最小树形图 朱刘算法)

    题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...

随机推荐

  1. PSP DAILY软件功能说明书

    PSP DAILY软件功能说明书 一.开发背景 你在完成了一周的软件工程作业后,需要提交一个PSP图表,里面有4项,如下所示: 1.本周PSP表格,包含每项任务的开始.中断.结束.最终时间,格式如下: ...

  2. Access连接数据源配置(新手必知)

    今天要连接Access时发现win7 64位旗舰版控制面板中管理工具下的数据源(ODBC)配置竟然只有SQLServer的驱动,其他的都没有了,这可不好玩!上网百度了一番,有人也遇过这样的问题,我在此 ...

  3. StringBuilder、StringBuffer和String三者的联系和区别

    String 类    String的值是不可变的,这就导致每次对String的操作都会生成新的String对象,不仅效率低下,而且大量浪费有限的内存空间.    String a = "a ...

  4. Alpha 冲刺5

    队名:日不落战队 安琪(队长) 今天完成的任务 组织第五次站立式会议(半冲刺总结交流会). 完成草稿箱前端界面. 明天的计划 回收站前端界面. 尝试去调用数据. 还剩下的任务 信息修改前端界面. 遇到 ...

  5. Spring源码解析 – AnnotationConfigApplicationContext容器创建过程

    Spring在BeanFactory基础上提供了一些列具体容器的实现,其中AnnotationConfigApplicationContext是一个用来管理注解bean的容器,从AnnotationC ...

  6. 获取emacs安装的elpa包名称

    | grep "./" | sed 's/\.\///g' | sed 's/-[0-9].*$//' | sort -u

  7. eclipse取消validation验证

    点击按钮如下:window-Preferences-Validation.如图. 然后把build里面的都取消.即可.

  8. 防御 XSS 的七条原则

    本文将会着重介绍防御XSS攻击的一些原则,需要读者对于XSS有所了解,至少知道XSS漏洞的基本原理,如果您对此不是特别清楚,请参考这两篇文章:<Stored and Reflected XSS ...

  9. JavaScript数组去重的四种方法

    今天,洗澡的想一个有趣的问题,使用js给数组去重,我想了四种方法,虽然今天的任务没有完成,5555: 不多说,po代码: //方法一:简单循环去重    Array.prototype.unique1 ...

  10. javascript 排序

    // 插入排序 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置.(如果待插入的元素与有序 ...