Meanshift算法
Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.
1. Meanshift推导
给定d维空间Rd的n个样本点 ,i=1,…,n,在空间中任选一点x,那么Mean Shift向量的基本形式定义为:

Sk是一个半径为h的高维球区域,满足以下关系的y点的集合,

k表示在这n个样本点xi中,有k个点落入Sk区域中.
以上是官方的说法,即书上的定义,我的理解就是,在d维空间中,任选一个点,然后以这个点为圆心,h为半径做一个高维球,因为有d维,d可能大于 2,所以是高维球。落在这个球内的所有点和圆心都会产生一个向量,向量是以圆心为起点落在球内的点位终点。然后把这些向量都相加。相加的结果就是 Meanshift向量。
如图所以。其中黄色箭头就是Mh(meanshift向量)。

再以meanshift向量的终点为圆心,再做一个高维的球。如下图所以,重复以上步骤,就可得到一个meanshift向量。如此重复下去,meanshift算法可以收敛到概率密度最大得地方。也就是最稠密的地方。

最终的结果如下:

Meanshift推导:
把基本的meanshift向量加入核函数,核函数的性质在这篇博客介绍:http://www.cnblogs.com/liqizhou/archive/2012/05/11/2495788.html
那么,meanshift算法变形为
(1)
解释一下K()核函数,h为半径,Ck,d/nhd 为单位密度,要使得上式f得到最大,最容易想到的就是对上式进行求导,的确meanshift就是对上式进行求导.
(2)
令:

K(x)叫做g(x)的影子核,名字听上去听深奥的,也就是求导的负方向,那么上式可以表示

对于上式,如果才用高斯核,那么,第一项就等于fh,k
第二项就相当于一个meanshift向量的式子:

那么(2)就可以表示为
下图分析
的构成,如图所以,可以很清晰的表达其构成。

要使得
=0,当且仅当
=0,可以得出新的圆心坐标:
(3)
上面介绍了meanshift的流程,但是比较散,下面具体给出它的算法流程。
- 选择空间中x为圆心,以h为半径为半径,做一个高维球,落在所有球内的所有点xi
- 计算
,如果
<ε(人工设定),推出程序。如果
>ε, 则利用(3)计算x,返回1.
2.meanshift在图像上的聚类:
真正大牛的人就能创造算法,例如像meanshift,em这个样的算法,这样的创新才能推动整个学科的发展。还有的人就是把算法运用的实际的运用中,推动整个工业进步,也就是技术的进步。下面介绍meashift算法怎样运用到图像上的聚类核跟踪。
一般一个图像就是个矩阵,像素点均匀的分布在图像上,就没有点的稠密性。所以怎样来定义点的概率密度,这才是最关键的。
如果我们就算点x的概率密度,采用的方法如下:以x为圆心,以h为半径。落在球内的点位xi 定义二个模式规则。
(1)x像素点的颜色与xi像素点颜色越相近,我们定义概率密度越高。
(2)离x的位置越近的像素点xi,定义概率密度越高。
所以定义总的概率密度,是二个规则概率密度乘积的结果,可以(4)表示

(4)
其中:
代表空间位置的信息,离远点越近,其值就越大,
表示颜色信息,颜色越相似,其值越大。如图左上角图片,按照(4)计算的概率密度如图右上。利用meanshift对其聚类,可得到左下角的图。
|
|
|
|
|
|
Meanshift算法的更多相关文章
- 基于 MeanShift 算法的目标跟踪问题研究
参考:http://www.cnblogs.com/tornadomeet/archive/2012/03/15/2398769.html MeanShift 算法作为一种基于特征的跟踪方法,基本思想 ...
- meanShift算法介绍
meanShift,均值漂移,在聚类.图像平滑.切割.跟踪等方面有着广泛的应用.meanShift这个概念最早是由Fukunage在1975年提出的,其最初的含义正如其名:偏移的均值向量:但随着理论的 ...
- Meanshift算法学习
ref:参考自:这里(目标跟踪) Meanshift图像分割:这里 最近看到FT算法使用meanshift算法进行显著图的分割,于是就来学习他的姿势 对于集合中的每一个元素,对它执行下面的操作:把该元 ...
- [综] meanshift算法
Meanshift,聚类算法 http://www.cnblogs.com/liqizhou/archive/2012/05/12/2497220.html 记得刚读研究生的时候,学习的第一个算法就是 ...
- 31(2).密度聚类---Mean-Shift算法
Mean-Shift 是基于核密度估计的爬山算法,可以用于聚类.图像分割.跟踪等领域.
- matlab工具箱之人眼检测+meanshift跟踪算法--人眼跟踪
Viola-Jones 人眼检测算法+meanshift跟踪算法 这次的代码是对视频中的人眼部分进行检测加跟踪,检测用的是matlab自带的人眼检测工具箱 下面是matlab官网介绍这个算法的一些东西 ...
- Meanshift均值漂移算法
通俗理解Meanshift均值漂移算法 Meanshift车手?? 漂移?? 秋名山??? 不,不,他是一组算法, 今天我就带大家来了解一下机器学习中的Meanshift均值漂移. Mea ...
- Meanshift,聚类算法(转)
原帖地址:http://www.cnblogs.com/liqizhou/archive/2012/05/12/2497220.html 记得刚读研究生的时候,学习的第一个算法就是meanshif ...
- 目标跟踪算法meanshift优缺点
原博主:http://blog.csdn.net/carson2005/article/details/7341051 meanShift算法用于视频目标跟踪时,采用目标的颜色直方图作为搜索特征,通过 ...
随机推荐
- Linux Supervisor的安装与使用入门---SuSE
Linux Supervisor的安装与使用入门 在linux或者unix操作系统中,守护进程(Daemon)是一种运行在后台的特殊进程,它独立于控制终端并且周期性的执行某种任务或等待处理某些发生的事 ...
- Scrapy 增加随机请求头 user_agent
原文: 为什么要增加随机请求头:更好地伪装浏览器,防止被 Ban. 如何在每次请求时,更换不同的 user_agent,Scrapy 使用 Middleware 即可 Spider 中间件 (Midd ...
- iis应用池内存溢出卡死优化
1.修改回收阀值memoryLimit 在ASP.NET Web服务器上,ASP.NET所能够用到的内存,通常不会等同于所有的内存数量.在machine.config(C:/WINDOWS/Micro ...
- Windows 8.1 操作系统常用快捷键
安装了 windows 8.1 有一段时间了,刚使用时有点儿不太习惯,后面知道了一些常用快捷键后,使用起来习惯多了.下面是一些常用的 Windows 8.1 快捷键: Ctrl + Tab: 访问所有 ...
- 【转载】Picasso下载器
Github源码地址:https://github.com/JakeWharton/picasso2-okhttp3-downloader 使用方法: Gradle: compile 'com.jak ...
- shell 从变量中切割字符串
1. 在shell变量中切割字符串 shell中截取字符串的方法有很多中,${expression}一共有9种使用方法.${parameter:-word}${parameter:=word}${pa ...
- 隐马尔可夫模型(Hidden Markov Model)
隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...
- 抓包分析LVS-NAT中出现的SYN_RECV
CIP:192.168.10.193 VIP:192.168.10.152:8000 DIP:100.10.8.152:8000 RIP:100.10.8.101:8000 和 100.10.8.10 ...
- Linux上用Docker部署Net Core项目
前提:本地配置好Docker环境1.构建Net Core镜像 docker pull microsoft/dotnet 2.新建一个DockerFile文件并填充内容 #基于 `microsoft/d ...
- OpenVAS漏洞扫描基础教程之创建用户组与创建角色
OpenVAS漏洞扫描基础教程之创建用户组与创建角色 OpenVAS创建用户组 用户组就是指许多个用户的组合.在网络中,各个访问网络的用户的权限可能各不相同.所以,可以通过将具体相同权限的用户划为一组 ...



